Заполни таблицу, используя зависимость между числами. Требуемое число равно двукратно увеличенному данному числу: данное число 9 10 11 12 пятикратно увеличенное число
максимума называется локальным максимумом, значение функции в точке минимума - локальным минимумом данной функции. Локальные максимум и минимум функции называются локальными экстремумами.
Точка x0 называется точкой строгого локального максимума функции y=f(x), если для всех x из окрестности этой точки будет справедливо строгое неравенство f(x)<f(x0).
Точка x0 называется точкой строгого локального минимума функции y=f(x), если для всех x из окрестности этой точки будет справедливо строгое неравенство f(x)>f(x0).
Наибольшее или наименьшее значение функции на промежутке называется глобальным экстремумом.
Нехай наше початкове число буде дорівнювати х. х=100%, тоді 30% від початкового числа будуть дорівнювати 0,3х.
Початкове число збільшили на 30 відсотків, тому число яке отримали буде дорівнювати х+0,3х=1,3х.
Потім зменшили число на 30%, але зауважу, зменшили не початкове число, а те число, яке ми отримали, тому це буде 30% від 1,3х. 100%=1,3х 30%=
Оскільки наше число зменшили, то отримане число буде дорівнювати 1,3х-0,39х=0,91х . Початкове число 1х, а отримане 0,91х. 1х-0,91х=0,09х отже число зменшилося на 9%.
Объяснение:
максимума называется локальным максимумом, значение функции в точке минимума - локальным минимумом данной функции. Локальные максимум и минимум функции называются локальными экстремумами.
Точка x0 называется точкой строгого локального максимума функции y=f(x), если для всех x из окрестности этой точки будет справедливо строгое неравенство f(x)<f(x0).
Точка x0 называется точкой строгого локального минимума функции y=f(x), если для всех x из окрестности этой точки будет справедливо строгое неравенство f(x)>f(x0).
Наибольшее или наименьшее значение функции на промежутке называется глобальным экстремумом.