Найдем сначала точки пересечения линий второго порядка
Приравняем правые части уравнений
y =1/(x^2+1) y=x^2/2
1/(1+x^2)=x^2/2
Так как 1+x^2 не равно нулю умножим обе части уравнения на 2(1+x^2)
2 =(1+x^2)*x^2
х^4+x^2-2 =0
Сделаем замену переменных z=x^2
z^2+z-2=0
D =1+8=9
z1=(-1-3)/2=-2 (ответ не подходит так как x^2>0)
z2 =(-1+3)/2=1
x^2=1 x1=-1 x2=1
Получили два предела интегрирования от -1 до 1
интеграл I от -1 до 1I (1/(x^2+1)-(1/2)x^2)dx =(arctgx-(1/6)x^3 Iот -1 до1I=
= arctg(1)-1/6 -(arctg(-1)-(-1)^3/6) = пи/4-1/6+пи/4 -1/6 =пи/2=1,57
S=П/2~1,57
Найдем сначала точки пересечения линий второго порядка
Приравняем правые части уравнений
y =1/(x^2+1) y=x^2/2
1/(1+x^2)=x^2/2
Так как 1+x^2 не равно нулю умножим обе части уравнения на 2(1+x^2)
2 =(1+x^2)*x^2
х^4+x^2-2 =0
Сделаем замену переменных z=x^2
z^2+z-2=0
D =1+8=9
z1=(-1-3)/2=-2 (ответ не подходит так как x^2>0)
z2 =(-1+3)/2=1
x^2=1 x1=-1 x2=1
Получили два предела интегрирования от -1 до 1
интеграл I от -1 до 1I (1/(x^2+1)-(1/2)x^2)dx =(arctgx-(1/6)x^3 Iот -1 до1I=
= arctg(1)-1/6 -(arctg(-1)-(-1)^3/6) = пи/4-1/6+пи/4 -1/6 =пи/2=1,57
S=П/2~1,57
Решение системы уравнений v=12
z=15
Объяснение:
Решить систему уравнений методом подстановки.
2)(z+v)/9 - (z-v)/3 =2
(2z-v)/6 - (3z+2v)/3= -20
Избавимся от дробного выражения, первое уравнение умножим на 9, второе на 6:
(z+v) - 3(z-v)=9*2
(2z-v) - 2(3z+2v)= 6*(-20)
z+v - 3z+3v=18
2z-v - 6z-4v= -120
Приводим подобные члены:
4v-2z=18
-4z-5v= -120
Выразим z через v в первом уравнении, подставим выражение во второе уравнение и вычислим v:
-2z=18-4v
2z=4v-18/2
z=2v-9
-4z-5v= -120
-4(2v-9)-5v= -120
-8v+36-5v= -120
-13v= -120-36
-13v= -156
v= -156/-13
v=12
z=2v-9
z=2*12-9
z=15
Решение системы уравнений v=12
z=15