М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ek72Wasdk
ek72Wasdk
25.01.2022 02:58 •  Алгебра

По графику данной функции определи те значения аргумента, при которых значения функции положительны,
если a= 2.
x∈

👇
Открыть все ответы
Ответ:
niaz167361
niaz167361
25.01.2022

Я попробовала решить. Если что не так не забанивай а пиши сообщение :)

Наименьшее общее кратное трёх чисел будет 20.

Совпадать удары будут для 1-го колокола через 20: 4/3 = 15 ударов, для 2-го - через 20: 5/3 = 12 ударов, для 3-го через 20: 2 = 10 ударов.

Всего ударов за минуту сделают 1-й колокол 60с: 4/3с + 1(в начальный момент времени) = 46, 2-й колокол 60: 5/3 + 1= 37, 3-й колокол: 60: 2 + 1 = 31 удар.

Возьмём все удары 1-го колокола 46.

Для 2-го колокола учтем все удары, кроме совпадающих, т.е.  вычтем совпадающие 37 - 12 -1(начальный) = 24.

Для 3-го колокола учтем все удары, кроме совпадающих, т.е.  вычтем совпадающие31 - 10 -1(начальный) = 20.

Всего мы услышим 46 + 24 + 20 = 90 (ударов)

 

4,5(42 оценок)
Ответ:
СофияKomarova
СофияKomarova
25.01.2022

ответ:Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками во о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

xn + yn = zn

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы перебора вариантов;

применение алгоритма Евклида;

представление чисел в виде непрерывных (цепных) дробей;

разложения на множители;

решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

метод остатков;

метод бесконечного спуска.

Объяснение:

4,4(38 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ