Поскольку график данной функции проходит через точку М(3; -1/11), то имеем: -1/11 = 1/(-9 + 3а - 4); -1/11 = 1/(-13 + 3а); -13 + 3а = -11; 3а = 2; а = 2/3.
у = 1/(-х² + (2/3)х - 4)
Наименьшее значение этой функции совпадает с наибольшим значением функции f(x) = -х² + (2/3)х - 4 (наибольшим значением знаменателя), которое равно значению ординаты вершины прараболы f(x) = -х² + (2/3)х - 4.
|+7| = 7 |-7| = 7, поэтому, если |x| = 7, то делаем вывод, что x = +-7 A) |2x-5|-1 = 7 или |2x-5|-1 = -7 |2x-5| = 8 или |2x-5| = -6 ---это невозможно по определению модуля 2x-5 = 8 или 2x-5 = -8 2x = 13 или 2x = -3 x = 6.5 или x = -1.5 Б) |2x-1|-5 = 7 или |2x-1|-5 = -7 |2x-1| = 12 или |2x-1| = -2 ---это невозможно по определению модуля 2x-1 = 12 или 2x-1 = -12 2x = 13 или 2x = -11 x = 6.5 или x = -5.5
3x+2 = 5x+6 или 3x+2 = -(5x+6) 2x = -4 или 8x = -8 x = -2 или x = -1
Поскольку график данной функции проходит через точку М(3; -1/11), то имеем: -1/11 = 1/(-9 + 3а - 4); -1/11 = 1/(-13 + 3а); -13 + 3а = -11; 3а = 2; а = 2/3.
у = 1/(-х² + (2/3)х - 4)
Наименьшее значение этой функции совпадает с наибольшим значением функции f(x) = -х² + (2/3)х - 4 (наибольшим значением знаменателя), которое равно значению ординаты вершины прараболы f(x) = -х² + (2/3)х - 4.
х₀ = -b/(2a) = -(2/3)/(-2) = 1/3 - абсциса вершины, f(1/3) = -1/9 + 2/9 - 4 = -35/9 - ордината вершины.
Значит y = 1/(-35/9) = -9/35 - наименьшее значение данной функции.
ответ: -9/35.