Свойства функции y=sinx
1. Область определения — множество R всех действительных чисел.
2. Множество значений — отрезок [−1;1].
3. Функция y=sinx периодическая с периодом T= 2π.
4. Функция y=sinx — нечётная.
5. Функция y=sinx принимает:
- значение, равное 0, при x=πn,n∈Z;
- наибольшее значение, равное 1, при x=π2+2πn,n∈Z;
- наименьшее значение, равное −1, при x=−π2+2πn,n∈Z;
- положительные значения на интервале (0;π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z;
- отрицательные значения на интервале (π;2π) и на интервалах, получаемых сдвигами этого интервала на 2πn,n∈Z.
6. Функция y=sinx:
- возрастает на отрезке
[−π2;π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z;
- убывает на отрезке
[π2;3π2] и на отрезках, получаемых сдвигами этого отрезка на 2πn,n∈Z.
Объяснение:
походу) если неправильно сори)
Надеюсь я правильно поняла, что надо найти сумму 4-х членов убывающей геометрической прогрессии
Сумма бесконечно убывающей прогрессии находится по формуле:
Sn=b1(1-q^n) /(1-q)
1. Найдём q
q=b4 : b3=0,16 :0,8=0,2
2. Найдём b1 из формулы: bn=b1*q^(n-1)
b3=b1*q^(3-1) Подставим в эту формулу известные нам данные: 0,8=b1*0,2^2
0,8=b1*0,04
b1=0,8 : 0,04=20
Отсюда: S4=20*(1-0,2^4)/(1-0,2)=20*(1-0,0016)/0,8=20*0,9984/0,8=19,968/0,8=24,96
ответ: S4=24,96