найдем одз. под корнем может находиться только неотрицательное значение, значит 5-х> =0, откуда х< =5. корень может принимать только неотрицательные значения, значит 5-х^2> =0, откуда х^2< =5, откуда |х|< =√5, откуда -√5< =х< =√5.
теперь решение:
вoзведем в квадрат:
(5-x^2)^2=5-x
25-10x^2+x^4=5-x
x^4-10x^2+x+20=0
(x^2-x-4)(x^2+x-5)=0
1) x^2-x-4=0
d=17
x(1)=(1+√17)/2> (1+√16)/2=(1+4)/2=5/2=√5*√5/2> √5*√4/2=√5. значит этот корень не подходит.
x(2)=(1-√17)/2 подставляя в изначальное уравнение, проверяем, что этот корень подходит.
2) x^2+x-5=0
d=21
x(1)=(-1+√21)/2 подставляя в изначальное уравнение, проверяем, что этот корень подходит.
x(2)=(-1-√21)/2< (-1-√16)/2=-5/2=-√5*√5/2< -√5*√4/2=-√5. значит этот корень не подходит.
ответ: х(1)=(1-√17)/2, х(2)=(-1+√21)/2.
Объяснение:мы умеем сравнивать дроби с одинаковыми знаменателями и одинаковыми числителями, числители у нас разные, но приводить к общему знаменателю мы умеем.
сравним
2/9 и 5/12, общий знаменатель 36,
2*4/(9*4) и 5*3/(12*3)
8 <15 значит 2/9 < 5/12
сравним
5/12 и 4/15, общий знаменатель 60
5*5/(12*5) и 4*4/(15*4)
25>16
значит 5/12 > 4/15
теперь мы знаем что 5/12 самое большое. надо сравить
2/9 и 4/15 общий знаменатель 45
2*5/(9*5) и 4*3/(15*3)
10 <12
значит 2/9 < 4/15
итого самая маленькая это 2/9 потом 4/15 и 5/12
Другой вариант решения привести все три дроби к одному общему знаменателю.
9=3^2 12=3*2*2 15=3*5, НОК= 2*2*3*3*5=180
2/9=2*20/(9*20)=40/180
5/12=5*15/(12*15)=75/180
4/15=4*12/(15*12)=48/180
в таком виде сравнить дроби просто.
2/9<4/15<5/12
3/8, 5/18 и 10/21
можно применить второй , но тут цифры будут неприятные, так что давайте всё-таки попарно
3/8 5/18
3*9/(8*9) 5*4/(18*4)
27/72 > 20/72
3/8 и 10/21
3*21/(8*21) 10*8/(21*8)
63/168 < 80/168
мы получили что 3/8 меньше 10/21 и больше 5/18, значит последнюю пару сравнивать не нужно можно сразу писать ответ
самое большое это 10/21 потом 3/8 и 5/18
Ну вот хз правильно или нет