1. В первой части неравенства замечаем формулу сокращенного умножения "разность квадратов" , а вторую часть просто раскрываем по формуле квадрата суммы:
4x^2-25-(4x^2+12x+9)<или равен 2
Раскрываем скобки с противоположным знаком.
4x^2-25-4x^2-12x-9<или равен 2
Приводим подобные слагаемые. 4x^2 сокращаются.
-12x-34<или равен 2
-12x<или равен 36
Т.к. -12 с отрицательным знаком, меняем знак неравенства на противоположный., получим x>или равен 3.
2. Разложим множители по формуле разности кубов и получим: =(x-3y)(x^2+3xy+y^2)
3. Чтобы прямая и парабола пересекались, нужно, чтобы у них совпадали x и y. Тогда Составляем систему ур-ний из данных формул. Подставляем y=100 в ур-ние y=x^2.
100=x^2. отсюда x1=100, x2=-100. Получаем точки: (100;100) и (-100;100)
Два экскаватора, работая совместно (х+у), могут вырыть котлован за 48 часов, то есть сделать 100% работы или 100%÷100%=1:
48(х+у)=1 (1)
Если первый проработает 40 часов, выполнив объём работы 40х, а второй 30 часов, выполнив объём работы 30у, то будет выполнено 75% работы или 75%÷100÷=0,75:
40х+30у=0,75 (2)
Составим и решим систему уравнений (методом подстановки):
{ 48(х+у)=1
{ 40х+30у=0,75
{х+у=1/48
{40х+30у=0,75
{х=1/48-у
{40х+30у=0,75
Подставим значение х во второе уравнение:
40(1/48-у)+30у=0,75
40/48-40у+30у=0,75
5/6-10у=0,75
-10у=0,75-5/6=75/100-5/6=3/4-5/6=3×3/12 - 5×2/12=9/12-10/12=-1/12
-10у=-1/12
10у=1/12
у=1/12÷10=1/120 - производительность второго экскаватора.
Тогда он выполнит весь объем работы (равный 1) за: 1÷1/120=120 часов.
ОТВЕТ: второй экскаватор, работая отдельно, сможет выполнить всю работу за 120 часов.
!Чтобы посчитать время работы первого экскаватора, подставим значение у в первое уравнение:
х=1/48-у=1/48-1/120=5/240-2/240=3/240=1/80
1÷1/80=80 (часов)