Пример 1. В урне 10 белых и 8 черных шаров. Наудачу отобраны 5 шаров. Найти вероятность того, что среди них окажется ровно 2 белых шара.
Подставляем в формулу (1) значения: K=10K=10, N−K=8N−K=8, итого N=10+8=18N=10+8=18, выбираем n=5n=5 шаров, из них должно быть k=2k=2 белых и соответственно, n−k=5−2=3n−k=5−2=3 черных. Получаем:
P=C210⋅C38C518=45⋅568568=517=0.294.P=C102⋅C83C185=45⋅568568=517=0.294.
Пример 2. В урне 5 белых и 5 красных шаров. Какова вероятность вытащить наудачу оба белых шара?
Здесь шары не черные и белые, а красные и белые. Но это совсем не влияет на ход решения и ответ.
Подставляем в формулу (1) значения: K=5K=5 (белых шаров), N−K=5N−K=5 (красных шаров), итого N=5+5=10N=5+5=10 (всего шаров в урне), выбираем n=2n=2 шара, из них должно быть k=2k=2 белых и соответственно, n−k=2−2=0n−k=2−2=0 красных. Получаем:
P=C25⋅C05C210=10⋅145=29=0.222.P=C52⋅C50C102=10⋅145=29=0.222.
Пример 3. В корзине лежат 4 белых и 2 черных шара. Из корзины достали 2 шара. Какова вероятность, что они одного цвета?
Здесь задача немного усложняется, и решим мы ее по шагам. Введем искомое событие
A=A= (Выбранные шары одного цвета) = (Выбрано или 2 белых, или 2 черных шара).
Представим это событие как сумму двух несовместных событий: A=A1+A2A=A1+A2, где
A1=A1= (Выбраны 2 белых шара),
Учи формулы квадратных уравнений ! Потом плавать не будешь !
14х^2-9х=0
Это неполное квадратное уравнение, т.к. коэффициент "с" = 0.
Здесь мы решаем по примеру в учебнике(там должны быть примеры решений!)
х выносим за скобки :
х(14х-9)=0.
Здесь мы будем как обычно рассматривать по отдельности число "х" и число "(14х-9)".
*Если бы было например, х(14х-9)=8(или другое число, не равное нулю),то уже придётся расскрывать скобки !И по отдельности уже рассматривать нельзя!
Вернёмся к нашему получившемуся примеру х(14х-9)=0
1)х=0
2)14х-9=0
14х=9
х=9/14
Т.к. с этой дробью ничего нельзя сделать,то так и оставляем !
ответ:0, 9/14.
Надеюсь всё понятно объяснила.
Тоже начали только проходить эту тему.Если будут вопросы-пиши. Постараюсь