М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aarchery
aarchery
07.09.2022 11:41 •  Алгебра

Очень важно. Можно ответ, желательно конечно с решением,но уже всё равно.

👇
Открыть все ответы
Ответ:
MrStepWay
MrStepWay
07.09.2022

Для решения запишем формулу бинома Ньютона:

(a+b)^n=a^n+C_n^1a^{n-1}b+C_n^2a^{n-2}b^2+...+b^n

Если а - слагаемое, содержащее неизвестную в наибольшей степени, то для определения степени результата нужно рассмотреть выражение a^n.

Если b - слагаемое, не содержащее неизвестную, то для определения свободного члена результата нужно рассмотреть выражение b^n.

Рассмотрим многочлен S(x)=P(x)\cdot Q(x), где:

P(x)=(3x^7+6x^4-1)^{12}

Q(x)=(5x^2+2)^3

Для определения степени и свободного члена произведения достаточно знать степень и свободный член каждого из множителей.

Для многочлена P(x)=(3x^7+6x^4-1)^{12}:

- степень определяется выражением (3x^7)^{12}=3^{12}\cdot x^{7\cdot12}=3^{12}\cdot x^{84}, то есть степень равна 84

- свободный член равен (-1)^{12}=1

Для многочлена Q(x)=(5x^2+2)^3:

- степень определяется выражением (5x^2)^3=5^3\cdot x^{2\cdot3}=125\cdot x^6, то есть степень равна 6

- свободный член равен 2^3=8

Наконец, для многочлена S(x)=P(x)\cdot Q(x) получим:

- степень определяется выражением x^{84}\cdot x^6=x^{84+6}=x^{90}, то есть степень равна 90

- свободный член равен 1\cdot8=8

Сумма степени и свободного члена многочлена S(x):

90+8=98

ответ: 98

4,5(17 оценок)
Ответ:
007sergey
007sergey
07.09.2022

Используем формулы привидения

1)  если в формуле содержатся углы 180° и 360° (π и 2π), то наименование функции не изменяется;

если же в формуле  содержатся  углы  90° и 270° (π/2 и 3π/2), то наименование функции меняется на сходное (синус на косинус, тангенс на котангенс и т. д.);

2)  чтобы определить знак в правой части формулы (+ или—), достаточно, считая угол  φ острым, определить знак  выражения, стоящего в левой части формулы.

 

sin(п-a)/2 cos(п/2+a)

 

sin(п-a)=sina (во второй четверти sin +)

2 cos(п/2+a)=2(-sina) (во второй четверти cos -)

 

sina/-2sina=-1/2

4,5(65 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ