Дано: АВСД - трапеция, АВ=СД, АД=20√3, ∠А=∠Д=60°, АС⊥СД. Найти S(АВСД).
Решение: Проведем высоту СН, тогда S(АВСД)=(ВС+АД):2*СН.
Рассмотрим ΔАСД - прямоугольный, ∠Д=60°, тогда ∠САД=90-60=30°, а СД=1\2 АД=20√3:2=10√3.
Диагональ АС перпендикулярна к боковой стороне и делит угол А пополам, значит большее основание трапеции в два раза больше меньшего основания и её боковых сторон; и высота трапеции равна половине её диагонали.
СД=ВС=20√3:2=10√3;
АС²=(20√3)²-(10√3)²=1200-300=900; АС=√900=30.
СН=1\2 АС=30:2=15.
S(АВСД)=(20√3+10√3):2*15=225√3 (ед²).
ответ: 225√3 ед²
-10
Объяснение:
|4x-7|+|x+6|>|3x-13|
|4x-7|+|x+6|-|3x-13|>0
Допустим:
|4x-7|+|x+6|-|3x-13|=0
1) |4x-7|≥0; 4x-7≥0; x≥7/4; x≥1,75
|x+6|≥0; x+6≥0; x≥-6
|3x-13|≥0; 3x-13≥0; x≥13/3⇒x∈[4 1/3; +∞)
(4x-7)+(x+6)-(3x-13)=0
4x-7+x+6-3x+13=0
2x+12=0; x₁=-12/2=-6 - этот корень не подходит данному интервалу.
2) |4x-7|≥0; x≥1,75
|x+6|≥0; x≥-6
|3x-13|<0; 13-3x<0; x<4 1/3⇒x∈[1,75; 4 1/3)
(4x-7)+(x+6)-(13-3x)=0
4x-7+x+6-13+3x=0
8x-14=0; x₂=14/8=7/4=1,75 - этот корень подходит данному интервалу.
3) |4x-7|≥0; x≥1,75
|x+6|<0; x<-6 - сразу видно неравенство не выполняется.
4) |4x-7|<0; 7-4x<0; x<1,75
|x+6|≥0; x≥-6
|3x-13|≥0; x≥4 1/3 - неравенство не выполняется.
5) |4x-7|<0; x<1,75
|x+6|≥0; x≥-6
|3x-13|<0; x<4 1/3⇒x∈[-6; 1,75)
(7-4x)+(x+6)-(13-3x)=0
7-4x+x+6-13+3x=0
0=0 - получаем тождество на данном интервале.
6) |4x-7|<0; x<1,75
|x+6|<0; x<-6
|3x-13|≥0; x≥4 1/3 - неравенство не выполняется.
7) |4x-7|<0; x<1,75
|x+6|<0; x<-6
|3x-13|<0; x<4 1/3⇒x∈(-∞; -6)
(7-4x)+(-x-6)-(13-3x)=0
7-4x-x-6-13+3x=0
-2x-12=0; x₃=12/(-2)=-6 - этот корень не подходит данному интервалу.
Из этого, что имеем: -6≤x<1,75v1,75<x<4 1/3
Корни 1,75 являются точками смены неравенства.
Проверяем крайнюю левую точку:
|-24-7|+|-6+6|>|-18-13|
31=31 - неравенство не выполняется.
|-40-7|+|-10+6|>|-30-13|
47+4>43; 51>43⇒-∞<x<-6
Проверяем крайнюю правую точку:
|40-7|+|10+6|>|30-13|
33+16>17; 49>17 - неравенство выполняется⇒1,75<x<∞
Итог: x∈(-∞; -6)∪(1,75; +∞).
-5·2=-10
Объяснение:
..........................