В первой ёмкости на 7 л кваса больше, чем во второй. Если из первой ёмкости перелить во вторую 15 л кваса, то во второй ёмкости станет в 2 раза больше, чем останется в первой. Сколько литров кваса в каждой ёмкости?
Пусть х (л) кваса будет во второй ёмкости, тогда х+7 (л) – в первой. Составим уравнение:
1. Запишем по две стороны от равно первую ёмкость х и вторую х+7. Из первой перельём (то есть вычтем) 15 литров и добавим их (приплюсуем) ко второй. Знаем, что во второй в 2 раза больше литров кваса после того, как мы перелили. Значит, чтобы в первой было столько же, сколько во второй, нужно умножить на 2. Пишем уравнение:
По формуле общего члена геометрической прогрессии:
Найти b₅₀/b₁₀=b₁·q⁴⁹/b₁·q⁹=q⁴⁰.
По условию: S₃₀ меньше (S₉₀-S₃₀) в 72 раза. Значит 72S₃₀=S₉₀-S₃₀ или 73S₃₀=S₉₀.
По формуле суммы n- первых членов геометрической прогрессии:
73b₁(q³⁰-1)=b₁(q⁹⁰-1); 73q³⁰-q⁹⁰=72
q³⁰=t q⁹⁰=(q³⁰)³=t³ Кубическое уравнение t³-73t+72=0 Легко заметить, что t=1 является корнем уравнения 1-73+72=0- верно. Это разложить левую часть на множители. t³-1-73t+73=0 (t-1)(t²+t+1)-73(t-1)=0 (t-1)(t²+t-72)=0 t₁=1 или t²+t-72=0 D=1+288=289 t₂=(-1-17)/2=-9 или t₂=(-1+17)/2=8 q³⁰=-9 - уравнение не имеет корней. q³⁰=8; (q¹⁰)³=2³. Значит q¹⁰=2 q⁴⁰=2⁴=16 О т в е т.b₅₀/b₁₀=q⁴⁰=16.
ответ: 52л; 59л
Объяснение:
Пусть х (л) кваса будет во второй ёмкости, тогда х+7 (л) – в первой. Составим уравнение:
1. Запишем по две стороны от равно первую ёмкость х и вторую х+7. Из первой перельём (то есть вычтем) 15 литров и добавим их (приплюсуем) ко второй. Знаем, что во второй в 2 раза больше литров кваса после того, как мы перелили. Значит, чтобы в первой было столько же, сколько во второй, нужно умножить на 2. Пишем уравнение:
2(х - 15) = (х + 7) + 15
2х - 30 = х + 7 + 15
2х - х = 7 + 15 + 30
х = 52 (л) – в первой ёмкости
х + 7 = 52 + 7 = 59 (л) – во второй ёмкости
ответ: 52л; 59л