0.6
Объяснение:
1) из первого мешочка взяли красный шар, вероятность =2/5, тогда во втором мешочке стало 3 красных шара и 3 белых
из второго мешочка извлекли красный шар, вероятность =3/6=1/2, тогда в третьем мешочке стало 3 красных шара и 3 белых, вероятность извлечения белого шара= 3/6=1/2
вероятность, что при этих условиях из третьего мешочка достали белый шар Р₁= 2/5 ·1/2 · 1/2=1/10
2)из первого мешочка достали красный шар, вероятность =2/5, тогда во втором мешочке стало 3 красных и 3 белых щара
из второго мешочка достали белый шар, вероятность =3/6=1/2, тогда в третьем мешочке стало 2 красных и 4 белых шара, тода вероятность извлечения белого шара =4/6=2/3
вероятность, что при этих условиях из третьего мешочка достали белый шар Р₂=2/5 · 1/2 · 2/3 = 2/15
3)из первого мешочка достали белый шар с вероятностью =3/5, тогда во втором мешочке стало 2 красных и 4 белых шара
из второго мешочка достали красный шар с вероятностью 2/6=1/3, тогда в третьем мешочке стало 3 красных и 3 белых шара и вероятность извлечь белый шар будет 3/6=1/2
вероятность при этих условиях извлечь из третьего мешочка белый шар Р₃= 3/5 ·1/3 · 1/2=1/10
4)из первого мешочка извлекли белый шар с вероятностью 3/5, тогда во втором мешочке будет 2 красных и 4 белых шара
из второго мешочка извлекли белый шар с вероятностью 4/6=2/3, тогда в третьем мешочке будет 2 красных и 4 белых шара и вероятность достать белый шар =4/6=2/3
вероятность при этих условиях достать из третьего мешочка белый шар Р₄=3/5 · 2/3 · 2/3=4/15
вероятность, что шар будет белым Р=Р₁+Р₂+Р₃+Р₄
Р=1/10 +2/15 + 1/10 + 4/15=3/5=0,6
sin^2 (9x)+sin(18x)=0
sin^2 (9x)+2sin(9x)*cos(9x)=0
sin(9x)*[sin(9x)+2cos(9x)]=0
sin(9x)=0 или sin(9x)+2cos(9x)=0
9x=pi * n tg(9x)=-2;
x=pi*n/9 x=(pi*n-arctg 2)/9
Наименьший положительный корень
x1=pi/9 x2=(pi-arctg 2)/9
Оценим х2: (pi/3)<arctg 2<(pi/2)
(pi-pi)/9>(pi-arctg 2)/9>(pi-pi/2)/9
(2pi/27)>(pi-arctg 2)/9>(pi/18)
(4pi/54)/9>(pi-arctg 2)/9>(3pi/54)
Сравним x2 с х1=pi/9=6pi/54 Очевидно, что х2<x1
ответ: положительный корень xmin=(pi-arctg 2)/9