Для каждого выражения под модулем в ур-нии допускаем случаи, когда соотв. выражение ">= 0" или "< 0", решаем получившиеся ур-ния.
1. x−1≥0x−1≥0 x+2≥0x+2≥0 2x−6≥02x−6≥0 или 3≤x∧x<∞3≤x∧x<∞ получаем ур-ние x−1+x+2+2x−6−18=0x−1+x+2+2x−6−18=0 упрощаем, получаем 4x−23=04x−23=0 решение на этом интервале: x1=234x1=234
2. x−1≥0x−1≥0 x+2≥0x+2≥0 2x−6<02x−6<0 или 1≤x∧x<31≤x∧x<3 получаем ур-ние x−1+x+2+−2x+6−18=0x−1+x+2+−2x+6−18=0 решение на этом интервале: Не найдены корни при этом условии
3. x−1≥0x−1≥0 x+2<0x+2<0 2x−6≥02x−6≥0 Неравенства не выполняются, пропускаем
4. x−1≥0x−1≥0 x+2<0x+2<0 2x−6<02x−6<0 Неравенства не выполняются, пропускаем
5. x−1<0x−1<0 x+2≥0x+2≥0 2x−6≥02x−6≥0 Неравенства не выполняются, пропускаем
6. x−1<0x−1<0 x+2≥0x+2≥0 2x−6<02x−6<0 или −2≤x∧x<1−2≤x∧x<1 получаем ур-ние −x+1+x+2+−2x+6−18=0−x+1+x+2+−2x+6−18=0 упрощаем, получаем −2x−9=0−2x−9=0 решение на этом интервале: x2=−92x2=−92 но x2 не удовлетворяет неравенству
7. x−1<0x−1<0 x+2<0x+2<0 2x−6≥02x−6≥0 Неравенства не выполняются, пропускаем
8. x−1<0x−1<0 x+2<0x+2<0 2x−6<02x−6<0 или −∞<x∧x<−2−∞<x∧x<−2 получаем ур-ние −x−2+−x+1+−2x+6−18=0−x−2+−x+1+−2x+6−18=0 упрощаем, получаем −4x−13=0−4x−13=0 решение на этом интервале: x3=−134x3=−134
.
ОбъяснеПравильных:3/5 3/7 3/11 3/13 3/17 3/19 3/23 5/7 5/11 5/13 5/17 5/19 5/23 7/11 7/13 7/17 7/19 7/23 11/13 11/17 11/19 11/23 13/17 13/19 13/23 17/19 17/23 19 / 23