Объяснение:т.к в прямоугл.тр.АBC проведена высота. Отсюда следует, что высота является биссектрисой и медийной. Т. К угол с =90 ° то он делится на два равные угла 45 и 45 ° . Т. К угол д=90° отсюда следует что Уго А равен 180-(90+45) =45°
Домножим неравенство на 3^(|x|) (это можно делать, так как 3^(|x|)>0): 2^(4x^2+|x|)≤3^|x|. Прологарифмируем это неравенство по основанию 2>1; смысл неравенства при этом сохранится: 4x^2+|x|≤|x|log_2 3 (справа я вынес за знак логарифма показатель степени). 4|x|^2+|x|-|x|log_2 3≤0; |x|(4|x|+1-log_2 3)≤0
1. x=0⇒неравенство принимает вид 0≤0 - верно⇒x=0 входит в ответ. 2. x≠0⇒|x|>0⇒на него можно неравенство сократить:
4|x|≤log_2 3 -1; |x|≤(log_2 3 - 1)/4; x∈[-(log_2 3 -1)/4; (log_2 3-1)]. Поскольку x=0 входит в этот промежуток, это и будет ответ
ответ: [-(log_2 3 -1)/4; (log_2 3-1)].
Замечание. При желании ответ можно записать в виде [-(log_2 (3/2))/4;(log_2 (3/2))/4]
Прологарифмируем неравенство по основанию 2; смысл неравенства при этом сохранится (поскольку 2>1⇒ логарифмическая функция возрастает, поэтому большему значению функции соответствует большее значение аргумента). Воспользуемся сразу свойствами логарифмов: логарифм произведения равен сумме логарифмов, при логарифмировании степени показатель выносится перед знаком логарифма (конечно, так можно делать, если все выражения имеют смысл):
(суть метода интервалов: наносим на числовой прямой нули числителя и знаменателя и выбираем нужные промежутки, например, как чаще всего заставляют делать в школе, подставляя в неравенство по одному числу из каждого промежетка (но надо сказать, что это самый дебильный из возможных
ответ:45°
Объяснение:т.к в прямоугл.тр.АBC проведена высота. Отсюда следует, что высота является биссектрисой и медийной. Т. К угол с =90 ° то он делится на два равные угла 45 и 45 ° . Т. К угол д=90° отсюда следует что Уго А равен 180-(90+45) =45°