1.
– 6x – 23 = – 9x – 5
– 6x + 9x = – 5 + 23
3x = 18
x = 6
2.
8x – 6 = 5x + 3
8x – 5x = 3 + 6
3x = 9
x = 3
3.
6x + 7 = 20x – 5 – 16
6x – 20x = – 16 – 5 – 7
-14x = -28
x = 2
4.
15x – 12x – 20 = 14x + 35
15x – 12x – 14x = 35 + 20
-11x = 55
x = -5
5.
15x – 40 – 6 + 15x = 4x – 20
15x + 15x – 4x = – 20 + 6 + 40
26x = 26
x = 1
6.
2(x-23)+3(15-x)=-x+1
2x – 46 + 45 – 3x = – x + 1
2x – 3x + x = 1 – 45 + 46
0x = 2
Какой бы x мы ни взяли, это уравнение не превратится в верное равенство. Значит, это уравнение решений не имеет!
Чтобы доказать тождество, нужно с тождественных преобразований:
либо правую часть привести к виду левой части;
либо левую часть привести к виду правой части ;
либо и левую и правую привести к какому другому одинаковому виду
Преобразуем левую часть:
(a - b)² = a² - 2ab + b²
Преобразуем правую часть:
(b-a)²=b² -2ba+a²
Так как аb=ba, то a²-2ab+b²=b²-2ba+a²
Значит
(a-b)²=(b-a)²
2) Выполняем тождественные преобразования левой части и приведем ее к виду правой части
(-a-b)²=(-a)²+2·(-a)·(-b)+(-b)²=a²+2ab+b²=(a+b)²