ответ:иррациональное
Объяснение:
Пусть √28 + 10√3 рациональное
√28 + 10√3=√4*7+10√3=2√7+10√3=2(√7+5√3)-рациональное
2 рациональное, значит √7+5√3 рациональное.
возведем в квадрат (√7+5√3)^2=7+2*5√3*7+25*3=7+10*√21+75=82+10*√21
√7+5√3 рациональное значит, √7+5√3 в квадрате тоже рациональное.
Значит 82+10*√21 рациональное, 82 рациональное => 10*√21, тоже рациональное.
10 рациональное значит √21 рациональное ПРОТИВОРЕЧИЕ
значит√28 + 10√3 иррациональное
(если что мы предполагали что √28 + 10√3 рациональное)
1.Решите неравенство методом интервалов
-х(в квадрате)-12х<0
-x^2-12x<0
-x(x-12)<0
x(x-12)>0
ищем критические точки х=0 - первая точка, х-12=0, х=12 - вторая точка
+ - +
012>x
x=13: x(x-12)=13*(13-12)>0
значитна промежутке (12;+бесконечность) л.ч. неравенства больше 0
при переходе через точку 12, меняем знак с + на -, и получаем, что на промежутке (0;12) л.ч. неравенства меньше 0
при переходе через точку 0 меняем знак с - на + ,и получаем, что на промежутке
(-бесконечность; 0) л.ч неравенства больше 0,
таким образом решением неравенства будет
(-бесконечность; 0)обьединение(12;+бесконечность)
2.При каких значениях параметра m уравнение
4х(в квадрате)-2mx+9=0
имеет два различных корня?
уравнение имеет два различных корня если дискриминант больше 0, т.е.
D=(-2m)^2-4*4*9=4m^2-144>0
4(m^2-36)>0
m^2-36>0
(m-6)(m+6)>0
ищем критические точки m+6=0, m=-6 - первая точка, m-6=0, m=6 - вторая точка(-6<6)
+ - +
(-6)6>m
x=7: (m-6)(m+6)=(7-6)(7+6)>0
значитна промежутке (6;+бесконечность) л.ч. неравенства больше 0
при переходе через точку 6, меняем знак с + на -, и получаем, что на промежутке (-6;6) л.ч. неравенства меньше 0
при переходе через точку -6 меняем знак с - на + ,и получаем, что на промежутке
(-бесконечность; -6) л.ч неравенства больше 0,
таким образом решением неравенства будет
m Є (-бесконечность; -6)обьединение(6;+бесконечность)
ответ
42
Объяснение:
в чемпионаты 21 матч в кожному матчи 2 команды 2*21=42