Пусть 15φ∈(0;π/2), т.е. φ∈(0;π/30). Тогда 5φ<10φ<15φ и, т.к. на интервале (0;π/2) функция sin(x) возрастает, а cos(x) - убывает, то sin(5φ)<sin(10φ)<sin(15φ) и cos(5φ)>cos(10φ)>cos(15φ). Значит, чтобы эти наборы совпадали, должны одновременно выполняться три условия:
sin(5φ)=cos(15φ), sin(10φ)=cos(10φ) и sin(15φ)=cos(5φ).
Решаем уравнение из 2-го условия и, учитывая, что 10φ∈(0;π/3), получаем 10φ=π/4, т.е. φ=π/40, 5φ=π/8, 15φ=3π/8. Подставляя это в 1-ое и 3-е условия, получим верные равенства: sin(5φ)=sin(π/8)=cos(π/2-π/8)=cos(3π/8)=cos(15φ) и sin(15φ)=sin(3π/8)=cos(π/2-3π/8)=cos(π/8)=cos(5φ). Итак, φ=π/40, а т.к. это единственное число из интервала (0;π/30), удовлетворяющее всем трем условиям, то оно и есть минимальное, т.е. в ответ идет 40.
Выражение имеет смысл, когда знаменатель не равен нулю и подкоренное выражение - неотрицательное число.
(20x - 11x² - 3x³)/x ≥ 0
x(20 - 11x - 3x²)/x ≥ 0
Сокращаем на x, но помним, что x ≠ 0.
20 - 11x - 3x² ≥ 0 |·(-1)
3x² + 11x - 20 ≤ 0
3x² + 15x - 4x - 20 ≤ 0
3x(x + 5) - 4(x + 5) ≤ 0
(3x - 4)(x + 5) ≤ 0
Нули: x = -5; 4/3.
●●> x
+ -5 - 4/3 +
x ∈ [-5; 4/3]
Учитывая, что x ≠ 0, получаем:
x ∈ [-5; 0) U (0; 4/3]
ответ: при x ∈ [-5; 0) U (0; 4/3].