М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sasho2325
Sasho2325
02.02.2022 07:10 •  Алгебра

Земельна ділянка має форму прямокутника, одна зі сторін якого на 7 м більша за іншу.

Якою має бути менша сторона ділянки, щоб її площа не перевищувала 60 м 2 ?

👇
Ответ:
Martin45707
Martin45707
02.02.2022

членоотсос

Объяснение:

в жопе у тебя

4,4(91 оценок)
Открыть все ответы
Ответ:
Арина11841
Арина11841
02.02.2022

найдём точку пересечения прямых
4y=3x ⇒ 12y=9x ⇒ 5x+12y=5x+9x=14x ⇒ 14x=10 ⇒ x = 5/7 ⇒ 4y=3·5/7=15/7 ⇒ y=15/28
найдём векторы нормали
-3x+4y=0 ⇒ n₁(-3;4)
5x+12y-10=0 ⇒ n₂(5;12)
Проверим, острый ли угол между n₁ и n₂ (равносильно n₁·n₂ > 0)
n₁·n₂=-3·5+4·12=-15+48 > 0
Находим единичные вектора нормали
n₁'=n₁/|n₁|=(-3;4)/√(3²+4²)=(-3/5;4/5)
n₂'=n₂/|n₂|=(5;12)/√(5²+12²)=(5/13;12/13)
Находим вектор нормали к биссектрисе острого угла между прямыми
n₃=n₁'+n₂'=(-14/65;112/65)
Другим вектором нормали будет n₃'=65/14 n₃=(-1;8)
Составляем уравнение биссектрисы по точке (5/7;15/28) и вектору нормали n₃
n₃'·(x,y)=n₃'·(5/7;15/28) ⇒ -x + 8y = -5/7 + 8 ·15/28 = 25 / 7, или
-7x + 56y = 25
другой возможный вариант решения, использовать тот факт, что любая точка биссектрисы равноудалена от двух данных прямых, и формулу расстояния от точки до прямой
|4y-3x|/√(4²+3²) = |5x+12y-10|/√(5²+12²)
13|4y-3x| = 5|5x+12y-10|
13(4y-3x) = ±5(5x+12y-10)
Один вариант знака даёт биссектрису острого угла, второй — биссектрису тупого угла, потом останется только разобраться, какой вариант к какой биссектрисе относится.

4,6(80 оценок)
Ответ:
Ks1mak
Ks1mak
02.02.2022

S(1)=1,   S(2)=1+3=4,   S(3)=1+3+5=9,   S(4)=1+3+5+7=16,  S(5)=….=25,

Замечаем, что сумма первых   n  нечётных чисел натурального ряда равна   n2  т.е.     S(n)=n2.  Докажем это м.м.и.

1) для   n =1  формула верна.

2) предположим, что она верна для какого-нибудь натурального   n=k  , т.е. S(k)= k2. 

  Докажем , что тогда она будет верна и для   n=k+1,   т.е.  S(k+1)=(k+1)2

S(k+1)=1+3+5+…+(2k-1)+(2k+1)=S(k)+(2k+1)=k2+2k+1=(k+1)2.

      Следовательно, формула  верна  для  всех  натуральных  значений  n ,        т.е.  S(n)=n2

4,7(5 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ