ответ: ниа.
объяснение:
к сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
сos px = a; sin gx = b; tg kx = c; ctg tx = d.
Обозначим длину прямоугольника за х, а ширину за у, тогда согласно условия задачи зная формулу площади прямоугольника: S=a*b,где а-длина, а в -ширина прямоугольника,
составим систему уравнений:
х-у=3
(х-2)*(у+4)-х*у=8
х-2- площадь прямоугольника до измения длины и ширины,
а (х-2*)*(у+4) -площадь прямоугольника при изменения его длины и ширины
Решим систему уравнений, из первого уравнения х=3+у
Подставим во второе уравнение данное х
(3+у-2)*(у+4)-(3+у)*у=8
(1+у)*(у+4)-3у-у^2=8
у+y^2+4+4y-3y-y^2=8
2y=8-4
2y=4
y=2, тогда х=3+2=5
Первоначальная площадь прямоугольника равна 5*2=10
ответ: 10см^2