запись |х| <= 1 означает, что -1 <= x <= 1
(или другими словами ---эквивалентна двойному неравенству...)
значит для этих значений х нужно выбрать часть параболы (Вы ее правильно описали: из начала координат, ветви вниз): ветви параболы берем только до точек с абсциссами -1 и 1 (т.е. верхнюю часть параболы... от точки (-1; -1) до точки (1; -1))
аналогично для гиперболы...
|х| > 1 соответствует объединению двух интервалов: (-бесконечнось; -1) U (1; +бесконечнось)
из 3 квадранта возьмем только часть гиперболы,
соотв. интервалу на оси ОХ (-бесконечнось; -1) ---граница не входит... (т.к. |х| > 1)
из 1 квадранта возьмем часть гиперболы,
соотв. интервалу на оси ОХ (1; +бесконечнось) ---граница не входит... (т.к. |х| > 1)
(остальную часть гиперболы (или параболы) как-будто стираем...)
если нужно ---прикреплю рисунок...
Задача на уравнение касательной к графику функции. Решение см во вложении.
К сожалению файл не вставляется во вложение.
Начну писать так:
Задана функция f(x) = 3х^2-3x+c
В точке с координатой х = а касательная описывается уравнением y=3x+4. Угловой коэффициент этой прямой k = 3, это и есть значение производной функции в этой точке f'(a) = 3.
Найдём производную f'(x) = 6x - 3, тогда f'(а) = 6а - 3 = 3 и а = 1
найдём f(a) при а = 1 f(a)=3*1 - 3*1 +с = с
Уравнение касательной имеет вид: у = f(a) +f'(a)(x-a)
Подставим сюда y=3x+4, f(a) = с, f'(a) = 3 а=1
3x+4 = с +3*(х-1)
3x+4 =с +3х-3
4 = с -3
с=7