V=(40-X)(64-X)X - функция. найти максимум, х∈(0, 40). найдем производную от V=(40-X)(64-X)X=х³-104х²+2560х она равна 3х²-208х+2560 найдем стационарные точки , приравняв производную к 0 , и решив кв. ур-ние 3х²-208х+2560=0 1) х=(104+√(104²-3·64·40))/3=(104+√((8·13)²-3·64·40)))/3= =(104+√(8²(13²-3·40)))/3=(104+8√(13²-3·40))/3=(104+8√(169-120))/3= =(104+8·7)/3=160/3
2) х=(104-√(104²-3·64·40))/3=(104-56)/3=16 ОСТАЛОСЬ по достаточному условию экстремума убедиться, что х=16 - точка максимума, проверяем знаки производной при переходе через эту точку, решаем неравенство 3х²-208х+2560>0, или простыми вычислениями для значений х из соответствующих промежутков.)
Если в дроби стоит только х в квадрате, а х прибавляется потом к дроби, то malru-sv правильно написал. А если в дроби стоит (х в кв. + х), тогда будет система: { x + 3 >= 0 { x^2 + x > 0
{ x >= -3 { x(x + 1) > 0 Распадается на 2 системы: 1) { x >= -3 { x > 0 { x + 1 > 0
{ x >= -3 { x > 0 { x > -1 x > 0, x принадлежит (0, + бесконечность)
2) { x >= -3 { x < 0 { x + 1 < 0
{ x >= -3 { x < 0 { x < -1 -3 <= x < -1, х принадлежит [-3, -1)
ответ: х принадлежит [-3, -1) U (0, + бесконечность)
Объяснение:
y=3x+2
0=3x+2
x=-2/3
y=3*0+2
y=2