1) В одной и той же системе координат постройте графики
функций y = x^2, y = x^3 и y = 3x + 2.
а) у = х²;
График - классическая парабола с центром в начале координат, ветви направлены вверх.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 9 4 1 0 1 4 9
По вычисленным точкам построить параболу.
б) у = х³;
График - кубическая парабола с центром в начале координат.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2
у -8 -1 0 1 8
По вычисленным точкам построить параболу.
в) у = 3х + 2;
График линейной функции прямая линия.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Таблица:
х -1 0 1
у -1 2 5
По вычисленным точкам построить прямую.
2) Решите графически уравнение x^3 = 3x + 2.
у = х³; у = 3х + 2;
Построить графики функций и найти координаты точек их пересечения.
а) у = х³;
График - кубическая парабола с центром в начале координат.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2
у -8 -1 0 1 8
По вычисленным точкам построить параболу.
б) у = 3х + 2;
График линейной функции прямая линия.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Если шифр пятизначный, то зафиксировав на втором месте цифру 5, а на последнем - цифру 0, получаем общее количество кодов для составления шифра замка: 5*1*5*5*1= 125 (Пояснение. Имеем 5 цифр. На первое место можно поставить любую из имеющихся пяти цифр, т.е. 7,8,5,1 и 0. Второе место "занято" цифрой 5, т.е. всего один вариант. На третье и на четвёртое место можно поставить любую из имеющихся пяти цифр (см. рассуждение выше). На последнем месте - единственный вариант - цифра ноль). Осталось только перемножить полученные варианты и вывести результат)
В решении.
Объяснение:
1) В одной и той же системе координат постройте графики
функций y = x^2, y = x^3 и y = 3x + 2.
а) у = х²;
График - классическая парабола с центром в начале координат, ветви направлены вверх.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у 9 4 1 0 1 4 9
По вычисленным точкам построить параболу.
б) у = х³;
График - кубическая парабола с центром в начале координат.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2
у -8 -1 0 1 8
По вычисленным точкам построить параболу.
в) у = 3х + 2;
График линейной функции прямая линия.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Таблица:
х -1 0 1
у -1 2 5
По вычисленным точкам построить прямую.
2) Решите графически уравнение x^3 = 3x + 2.
у = х³; у = 3х + 2;
Построить графики функций и найти координаты точек их пересечения.
а) у = х³;
График - кубическая парабола с центром в начале координат.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2
у -8 -1 0 1 8
По вычисленным точкам построить параболу.
б) у = 3х + 2;
График линейной функции прямая линия.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
Таблица:
х -1 0 1
у -1 2 5
По вычисленным точкам построить прямую.
Координаты точек пересечения: (-1; -1); (2; 8).
Решения уравнения: х = -1; х = 2.