Арифметическая прогрессия - это последовательность, у которой каждое последующее число получается из предыдущего добавлением к нему постоянного числа d, называемого шагом или разностью. Шаг м.б. как положительным, так и отрицательным числом. 1) Проверим, будет ли постоянным шаг, если из n-го члена последовательности вычесть (n-1)-й член. n-й член нам дан: an = 5n + 3, найдём (n-1)-й: a(n-1) = 5 (n - 1) + 3 = 5n -2. Вычитаем, an - a(n-1) = 5n + 3 - 5n + 2 = 5 = d Получили постоянную, которая не зависит от n, значит, это арифметическая прогрессиия, d = 5. Считаем сумму 10 первых членов по формуле: Sn = (1/2) * (2*a1 + d*(n - 1)) * n Для этого надо знать ещё a1 = 5 *1 + 3 = 8 S10 = (1/2) * (2*8 + 5*(10-1))*10= (16 + 45)*5 = 305
Объяснение:
№1
а) х2+5х-6=0
Д=b2-4ac=25-4*1*(-6)=25+24=49
б) 4х2-5х-4=0
Д=b2-4ac=25-4*4*(-4)=25+64=89
№2
а)х2-8х-84=0
Д=b2-4ac=64-4*1*(-84)=400.
Так как дискриминант положительный то уравнение имеет два корня.
б)36х2-12х+1=0
Д=b2-4ac=144-4*36*1=0
Так как дискриминант =0 то уравнение имеет один корень.
в)х2+3х+24=0
Д=b2-4ac=9-4*1*24=-87
Так как дискриминант отрицательный уравнение корней не имеет.
№3
а)х2-5х+6=0
Д=b2-4ac=25-4*1*6=1 Корень квадратный из Дискриминанта=1
Х1=(-b+Корень квадратный из Дискриминанта)/2a=(5+1)/2=3
X2=(-b-Корень квадратный из Дискриминанта)/2a=(5-1)/2=2
б)х2-2х-15=0
Д=b2-4ac=4-4*1*(-15)=64 Корень квадратный из Дискриминанта=8
Х1=(-b+Корень квадратный из Дискриминанта)/2a=(2+8)/2=5
X2=(-b-Корень квадратный из Дискриминанта)/2a=(2-8)/2=-3