1) Число делится на 11, если сумма цифр, которые стоят на четных местах равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11. Пусть - четырехзначное число, записанное одинаковыми цифрами (х = 1, 2, ...9) Тогда на четных местах: х+х = 2х, на нечетных местах: х+х = 2х. суммы одинаковые, значит делится на 11. 2) ххх - трехзначное число, записаноое одинаковыми цифрами (х = 1, 2,...9). На четных местах: х, на нечетных местах: х+х = 2х. 2х ≠ х, значит число ххх на 11 не делится. Число делится на 37 тогда и только тогда, когда на 37 делится модуль утроенного числа сотен, сложенного с учетверённым числом десятков, за вычетом числа единиц, умноженного на семь. |3x + 4x - 7x| = |0| = 0 - делится на любое число, в т.ч. и на 37.
n=-1
Объяснение:
1) 8n^2+40n+48=9n^2+42n+49
2)n^2+2n+1=0
3)(n+1)^2=0
4)n+1=0
5)n=-1