М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kosik1512
Kosik1512
08.11.2022 07:02 •  Алгебра

даю!!
3. Из данных уравнений выберите те, график которых сов-
падает с графиком уравнения 3х - 2y = 2:
1) 6х — 4y = 4;
2) 2х – 3у = 2;
3) 6у все три решите​

👇
Ответ:
serpermiakov
serpermiakov
08.11.2022

Какой класс там такое же встречал

4,8(66 оценок)
Ответ:
apple1345
apple1345
08.11.2022

Объяснение:

как ваши делишки на дичтанционке?

4,5(50 оценок)
Открыть все ответы
Ответ:
algriskova06
algriskova06
08.11.2022
1) 3sinx-√3 cosx=3;
Уравнения вида asinx+bcosx=c решаются следующим образом:
1) нужно разделить обе части уравнения на выражение √(a²+b²);
a=3, b=-√3; √(3²+(-√3)²)=√(9+3)=√12=2√3;
2) получаем уравнение вида
√3/2sinx-1/2cosx=√3/2; (√3/2=cosπ/6, 1/2=sinπ/6);
Далее используем формулу сложения (сумму или разность для синуса):
sinx*cosπ/6-cosx*sinπ/6=√3/2;
sin(x-π/6)=√3/2;
x-π/6=(-1)^(k)*arcsin(√3/2)+πk, k∈Z;
x-π/6=(-1)^(k)*π/3+πk,k∈Z;
x=(-1)^(k)*π/3+π/6+πk, k∈Z.
ответ: (-1)^(k)*π/3+π/6+πk, k∈Z.

Во втором уравнении несколько сложней, так как получаются не табличные значения.
Для уравнения вида asinx+bcosx=c есть равносильное уравнение
sin(x+α)=c/√(a²+b²), где α=arccos a/√(a²+b²), α=arcsin b/√(a²+b²), α=arctg b/a.
2) 4sinx+6cosx=1;
a=4, b=6, √(4²+6²)=√(16+36)=√52=2√13;
В этом уравнении удобнее взять α=arctg b/a=arctg 6/4=arctg 3/2.
Получаем
sin(x+arctg 3/2)=√13/26;
x=(-1)^(k)*arcsin √13/26-arctg 3/2+πk, k∈Z.
ответ: (-1)^(k)*arcsin √13/26-arctg 3/2+πk, k∈Z.
4,8(12 оценок)
Ответ:
1234567891241
1234567891241
08.11.2022
Докажем методом математической индукции:
1) Для n = 1 (базис индукции)
1/1(1 + 1) = 1/(1 + 1)
1/2 = 1/2

2) Пусть n = k равенство (1) выполняется:
1/1•2 + 1/2•3 + 1/3•4 + ... + 1/k(k + 1) = k/(k + 1)

3) Докажем теперь, что при n = k + 1 равенство выполняется (шаг индукции):
1/1•2 + 1/2•3 + 1/3•4 + ... + 1/k(k + 1) + 1/(k + 1)(k + 2) = (k + 1)/(k + 2)

1/1•2 + 1/2•3 + 1/3•4 + ... + 1/k(k + 1) = (k + 1)/( k + 2) - 1(/k + 1)( k + 2)

Приведем дроби в правой части к общему знаменателю:
(k + 1)² - 1/(k + 1)(k + 2) = (k² + 2k + 1 - 1)/(k + 1)(k + 2) = (k² + 2k)/(k + 1)(k + 2) = k(k + 2)/(k + 1)(k + 2) = k/(k + 1)
Теперь запишем то, что должно получиться:

1/1•2 + 1/2•3 + 1/3•4 + ... + 1/k(k + 1) = k/(k + 1)
Мы пришли к равенству (1), которое предполагало, что при n = k данное равенство верно, значит, при любом натуральном n равенство верно. Доказано.
4,4(15 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ