М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Sophia4sophia
Sophia4sophia
19.05.2020 17:43 •  Алгебра

Знайти перший член і різницю арифметичної прогресії (an) якщо
a3+a5=-2 і a7+a10=4

👇
Открыть все ответы
Ответ:
grabon12312
grabon12312
19.05.2020
Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной.
Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида  . Рисуем ось  и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось  на  N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
4,8(22 оценок)
Ответ:
Tigor111
Tigor111
19.05.2020

ответ: 1) M[X]=7; 2) более вероятно выпадение 3 орлов при 5 бросаниях монеты.

Объяснение:

1) Случайная величина X - число очков при бросаниях двух кубиков - может принимать значения от 2 до 12.

Событие А2 - выпало 2 очка - может реализоваться только одним :

- на 1 кубике выпало 1 очко и на 2 - тоже 1 очко.

Событие А3 - выпало 3 очка - может реализоваться следующими двумя :

1 и 2 или 2 и 1

Событие А4 - выпало 4 очка:

1 и 3 или 2 и 2 или 3 и 1 - всего .

Событие А5 - выпало 5 очков:

1 и 4 или 2 и 3 или 3 и 2 или 3 и 1 - всего .

Событие А6 - выпало 6 очков:

1 и 5 или 2 и 4 или 3 и 3 или 4 и 2 или 5 и 1 - всего .

Событие А7 - выпало 7 очков:

1 и 6 или 2 и 5 или 3 и 4 или 4 и 3 или 5 и 2 или 6 и 1 - всего .

Событие А8 - выпало 8 очков:

2 и 6 или 3 и 5 или 4 и 4 или 5 и 3 или 6 и 2 - всего .

Событие А9 - выпало 9 очков:

3 и 6 или 4 и 5 или 5 и 4 или 6 и 3 - всего .

Событие А10 - выпало 10 очков:

4 и 6 или 5 и 5 или 6 и 4 - всего .

Событие А11 - выпало 11 очков:

5 и 6 или 6 и 5 - всего .

Событие А12 - выпало 12 очков:

6 и .

Найдём вероятности этих событий. Так как вероятности всех одинаковы и равны 1/6*1/6=1/36, а сами являются несовместными событиями, то:

p(A2)=p(A12)=1*1/36=1/36; p(A3)=p(A11)=2*1/36=2/36; p(A4)=p(A10)=3*1/36=3/36; p(A5)=p(A9)=4*1/36=4/36; p(A6)=p(A8)=5*1/36=5/36; p(A7)=6*1/36=6/36.

Проверка: так как события А2...А12 несовместны и притом образуют полную группу, то p(A2)+p(A3)+...+p(A12)=1. Действительно, 1/36+2/36+3/36+4/36+5/36+6/36+5/36+4/36+3/36+2/36+1/36=36/36=1 - значит, вероятности найдены верно.

Составляем таблицу распределения случайной величины X:

xi      2       3       4        5       6        7        8       9       10      11       12

pi   1/36  2/36  3/36  4/36  5/36  6/36  5/36  4/36  3/36  2/36  1/36

Математическое ожидание M[X}=∑xi*pi=252/36=7.

2) Число m1, которыми можно получить 3 орла при 5 бросаниях монеты, определяется по формуле m1=C(5,3)=10, где C(n,k) - число сочетаний из n по k. А так как вероятность любого p=1/2*1/2*1/2*1/2*1/2=1/32, то вероятность появления 3 орлов при 5 бросаниях монеты p1=10*p=10/32. Число m2, которыми можно получить 5 орлов при 7 бросаниях монеты, определяется по формуле m2=C(7,5)=21. А так как вероятность любого p2=1/2*1/2*1/2*1/2*1/2*1/2*1/2=1/128, то вероятность появления 5 орлов при 7 бросаниях монеты p2=21*p=21/128. Так как p1>p2, то первое событие более вероятно.    

4,5(9 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ