9 и 18 часов
Определим, что первому крану понадобится х часов, чтобы самостоятельно разгрузить баржу, тогда второму понадобиться (х + 9) часов. Весь объём работы обозначим 1 и запишем производительность труда каждого крана и их общую.
1 / х - производительность первого крана;
1 / (х + 9) - производительность второго крана;
1 / 6 - общая производительность.
Составим уравнение:
1 / х + 1 / (х + 9) = 1 / 6
6х + 54 + 6х = х² + 9x
x² - 3x - 54 = 0
D = 225, х1 = -6, х2 = 9.
Отрицательный корень нам не подходит.
х = 9 часов - время работы первого крана самостоятельно;
х +9 = 9 + 9 = 18 часов - время работы второго крана самостоятельно.
ответ: 9 и 18 часов.
(x - 1)^2*(x + 2) = 0
(x - 1)^2 = 0
x - 1 = 0
x = 1
x + 2 = 0
x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1
x₁ = 1
x₂= - 1;
x - 3 = 0
x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0
x = 4
x - 3 = 0
x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0
x^2 = 4
x₁ = 2;
x₂ = - 2
x + 1 = 0
x₃ = - 1