Назначим скорость первого автомобиля через x ⇒ Время первого автомобиля, за которое он весь путь
Второй проехал первую половину пути со скоростью, меньшей скорости первого на 14 км/ч: значит его скорость первую половину пути был x-14км/ч, a вторую половину пути - со скоростью 105 км/ч, значит время второго автомобиля, за которое он весь путь:
Время первого автомобиля равно времени второго автомобиля, Значит: D=119²-4*2940=2401=49² x₁=(119+49)/2=84км/ч x₂=(119-49)/2=35км/ч т.к. по условию задачи скорость первого автомобиля больше 50 км/ч, то ответ 84 км/ч
(x-3)/х - данная дробь (х-3+1)/(х+1) = (х-2)/(х+1) - новая дробь Так как по условию их разность равна 3/20, то составляем уравнение: (х-2)/(х+1) - (х-3)/ х = 3/20 приводим к общему знаменателю: 20х(х+1) и отбрасываем его, заметив, что х≠0, х≠-1 20х(х-2)-20(х+1)(х-3) = 3х(х+1) 20х²-40х-20х²+40х+60=3х²+3х 3х²+3х-60=0 | :3 х²+х-20=0 Д=1+80=81=9² x(1)=(-1+9)/2=4 => исходная дробь (4-3) / 4 = 1/4 x(2)=(-1-9)/2=-5 => исходная дробь (-5-3) / (-5) = -8/(-5) = 8/5>1 не подходит под условие задачи ответ: 1/4
ответ: Они открыты когда знак точный(>,<), а когда знак не точный(≤,≥) закрыты.