М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
darikesa69
darikesa69
17.07.2021 19:19 •  Алгебра

Решите систему неравенств 3х+14< 2 2х+1< 0 это система

👇
Ответ:
Dany200808
Dany200808
17.07.2021

3х<-12

2x<-1

 

x<-4

x<-0.5 

 

х пренадлежит (-0,5; + ∞)

4,6(37 оценок)
Ответ:
Awzida
Awzida
17.07.2021

посмотри на рис 

3х+14<2

2х+1<0    


Решите систему неравенств 3х+14< 2 2х+1< 0 это система
4,6(100 оценок)
Открыть все ответы
Ответ:
AlinaZimina1
AlinaZimina1
17.07.2021
Доказать можно методом математической индукции...
только есть нюанс -числа целые (а не натуральные)))
1) для четного целого n утверждение очевидно:
n = 2k, k∈Z          (2k)² - 5(2k) + 2 = 2*(2k² - 5k + 1)
2) для НЕчетного целого n:
n = 2k+1, k∈Z         
(2k+1)² - 5(2k+1) + 2 = 4k² + 4k + 1 - 10k - 5 + 2 = 2*(2k² - 3k - 1)

для чисел, кратных трем, будет на один вариант больше представлений:
n = 3k (число кратно трем)
n = 3k+1 (число НЕ кратно трем --дает остаток 1)
n = 3k+2 (число НЕ кратно трем --дает остаток 2)
1)      (3k)³ + 2(3k) - 3 = 3*(9k³ + 2k - 1)
2)      (3k+1)³ + 2(3k+1) - 3 = 27k³ + 27k² + 9k + 1 + 6k + 2 - 3 =
= 3*(9k³ + 9k² + 3k)
3)      (3k+2)³ + 2(3k+2) - 3 = 27k³ + 54k² + 36k + 8 + 6k + 4 - 3 =
= 3*(9k³ + 18k² + 14k + 3)

можно было доказывать и в первом и во втором случае кратность только для первых двух слагаемых, т.к. третьи слагаемые в обоих случаях кратны заданным числам... чуть короче бы получилось...
4,6(41 оценок)
Ответ:
odyvanchik22
odyvanchik22
17.07.2021

а) Всего все возможных исходов: C^4_{25}C254

Всего мальчиков 25-15=10. Три юноши и одна девушка могут выиграть 4 билета Всего благоприятных событий: C^3_{10}C^1_{15}=15C^3_{10}C103C151=15C103

Вероятность того, что среди обладателей билетов окажутся 3 юноши 1 девушка равна \dfrac{15C^3_{10}}{C^4_{15}}C15415C103

б) Билеты могут получить хотя бы 1 юноша, то есть это можно рассматривать как 1 юноша и 3 девушки или 2 юноша и 2 девушки или 3 юноша и 1 девушка или 4 юноша и 0 девушек. Всего вариантов получить 4 билета может выиграть хотя бы 1 юноша Вероятность того, что среди обладателей билетов окажутся хотя бы 1 юноша равна \dfrac{10C^3_{15}+C^2_{10}C^2_{15}+15C^3_{10}+C^4_{10}C^0_{15}}{C^4_{25}}C25410C153+C102C152+15C103+C104C150

4,4(26 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ