f(|2x+7|)>f(|x-3|)
Т.к. по условию функция y=f(x) убывает => большему значению аргумента соответствует меньшее значение функции =>
|2x+7| < |x-3|
Так как и левая, и правая части неравенства принимают только положительные значения, то возведем обе части неравенства в квадрат:
|2x+7|² < |x-3|²
(2x+7)² - (x-3)² < 0 слева стоит разность квадратов
(2x+7 - х +3)(2x+7 + x-3) < 0
(x + 10)(3x + 4) < 0
Найдем нули функции (x + 10)(3x + 4) с метода интервалов:
x + 10 - + +
-10-1 1/3
3x + 4 - - +
Видим, что ф-ция (x + 10)(3x + 4) < 0 когда x + 10 и 3x + 4 принимают противоположные по знаку значения,
т.е. на промежутке ( -10 ; - 1 1/3).
ответ: ( -10 ; - 1 1/3)
Первое уравнение х-у=73 (тут думаю понятно, х и у - те самые натуральные числа)
Второе уравнение х*0,4-1,5у=5 (первое число умножаем на 0,4 потому, что если уменьшить число на 60 % - то останется 40 % от числа, т. е. все равно что это некое число умножить 0,4; увеличить на 50 % - т. е. прибавить к числу еще половину от этого числа - т. е. все равно что это число умножить на 1,5)
Далее: выражаем одно число через второе х=73+у,
второе уравн-е в этой системе пишем такое же х*0,4-1,5у=5
х=73+у х=73+у х=73+у
(73+у) 0,4-1,5у=5 29,2+0,4у-1,5у=5 29,2-5=1,1у
х=73+у х=73+у х=73+у
24,2=1,1у у=24,2/1,1 у=22
подставляем полученный у в первое уравнение
х=73+22 х=95
у=22 у=22