М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
czartan
czartan
07.11.2020 03:58 •  Алгебра

Отметьте уравнения, которые являются линейными:
1) x²+2y²=11
2)-3x+5y=-5
3)x-y=72
4)-19xy=95

👇
Открыть все ответы
Ответ:
иринка2807
иринка2807
07.11.2020
Множество целых чисел \mathbb{Z} разделим на три класса:
\mathbb{Z} = \mathbb{Z}_0 + \mathbb{Z}_1 + \mathbb{Z}_2, где + обозначает операцию объединения и изначает, что множества \mathbb{Z}_0,\mathbb{Z}_1,\mathbb{Z}_2, дисъюнктны.
\mathbb{Z}_0 = \{a \in \mathbb{Z} | \exists{b \in \mathbb{Z}: a = b*3}\}
\mathbb{Z}_1 = \{a \in \mathbb{Z} | \exists{b \in \mathbb{Z}: a = b*3+1}\}
\mathbb{Z}_2 = \{a \in \mathbb{Z} | \exists{b \in \mathbb{Z}: a = b*3+2}\}
Данное разделение множества целых чисел существует по принципу решета Эрастофена.
x \equiv 0\ \ (mod 6) \Leftrightarrow x \equiv 0 \ \ (mod 2) \land x \equiv 0 \ \ (mod3)
x^3 + 41x = x(x^2 + 41).
Так как при четном x выражение делится на два, а при нечетном x^2 + 41 делится на два (сумма нечетных чисел четна), то есть выражение все равно делится на два, первое условие выполнено. Докажем, что x делится на 3:
Так как x \in \mathbb{Z} = \mathbb{Z}_0 + \mathbb{Z}_1 + \mathbb{Z}_2, то рассмотрим три случая:
1) x \in \mathbb{Z}_0 \Rightarrow x^3 + 41x \equiv 0 \ \ (mod 3) так как x^3 + 41x = x(x^2+41).
2) x \in \mathbb{Z}_1 \Rightarrow \exists{b \in \mathbb{Z} : x = 3b + 1}
x^2 + 41 = (3b)^2 + 2*(3b)*41 + 1 + 41 = 3*m + 42 = 3*n для каких-то m,n \in \mathbb{Z}, то есть x^3+41x \equiv 0 \ \ (mod 3).
3) x \in \mathbb{Z}_2 \Rightarrow \exists{b \in \mathbb{Z} : x = 3b + 2}.
x^2 + 41 = (3b)^2 + 2*(3b)*41 + 4 + 41 = 3m + 45 = 3n для каких-то m,n \in \mathbb{Z}, то есть x^3+41x \equiv 0 \ \ (mod 3).
Тогда для всех x \in \mathbb{Z} выражение x^3+41x делится на 6.
4,8(77 оценок)
Ответ:
artembryzgin
artembryzgin
07.11.2020

Пусть центр окружности имеет координаты О(х;0)  .

Точки принадлежащие окружности имеют координаты (8;0)  и (0;4). Их координаты удовлетворяют уравнению окружности:

(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .

(8-х)²+(0-0)²=R² , или 64-16х+х²=R²

(0-х)²+(4-0)²=R²   или  х²+16=R² .      Вычтем из 1 уравнения 2. Получим :

                                  64-16х-16=0

                                  -16х=-48

                                    х=3.  Центр имеет координаты О(3;0).

Найдем R=√( (3-0)²+(0-4)² )=5.

(x− 3)²+y²=5²

Объяснение:

4,6(51 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ