Объяснение: пусть скорость катера=х, и если он по течению, то его скорость увеличилась на 3км/ч, поэтому по течению он проплыл 48км со скоростью х+3. Когда он плыл против течения, то скорость течения ему не а наоборот и он проплыл 18км со скоростью х-3. По течению он потратил 48/х+3 времени, а против 18/х-3. Зная, что он потратил на всю дорогу 3 часа, составим уравнение:
(48/х+3)+(18/х-3)=3 |на этом этапе подбираем общий знаменатель:
(48х-144+18х+54)/(х+3)(х-3)=3
(66х-90)/(х²-9)=3 | перемножим числитель и знаменатель соседних дробей крест накрест:
(х²-9)3=66х-90
3х²-27-66х+90=0
3х²-66х+63=0 |÷3
х²-22х+21=0
Д=484-4×21=484-84=400
х1=(22-20)/2=2/2=1
х2=(22+20)/2=42/2=21
Итак: есть 2 варианта значения х, но первый вариант нам не подходит поскольку скорость катера на самом деле больше, чем 1км/ч, поэтому используем х2=21.
Скорость катера=21км/ч
Разложите на множители выражение
(х+у)^2 - ( x^4- 2*x^2*y^2+ y^4 )=
=(х+у)^2 - ( x^2- y^2 )^2=
=(х+у)^2 - ( (x- y) (x+y) )^2=
=(х+у)^2 - (x- y)^2 (x+y)^2=
=(х+у)^2 (1 - (x- y)^2) =
=(х+у)^2 (1 - (x- y)) (1 +(x-y)) =
=(х+у)^2 (1 - x+ y) (1 +x-y)
Сократите дроби:
10а^2-6a+5ab-3b / 5a^2-8a+3=
=2a(5а-3)+b(5a-3) / 5a^2-5a-3a+3=
=(2a+b)(5a-3) / 5a(a-1)-3(a-1)=
=(2a+b)(5a-3) / (a-1)(5a-3)=
=(2a+b) / (a-1)
x^2-4x+1 / x^2-2(2+√3)x+(4+4√3+3)=
=x^2-4x+4-3 / x^2-2(2+√3)x+(2^2+4√3+√3^2)=
=(x-2)^2 - √3^2 / x^2-2(2+√3)x+(2+√3)^2=
=(x-2-√3) (x-2+√3) / ( x - (2+√3) )^2=
=(x-2-√3) (x-2+√3) / ( x- 2-√3)^2 =
=(x-2-√3) (x-2+√3) / ( x-2-√3) (x-2-√3)=
=(x-2+√3) / ( x-2-√3) или =(x+√3-2) / ( x-√3-2)