функция задана формулой у=18-2х^2. Не выполняя построения определите
а) координаты точек пересечения графика функции с осями координат
Пересечение в осью Ох: у=0
18-2x²=0
2x²=18
x²=9
x=3 или x=-3
точки пересечения (3;0) или (-3;0)
Пересечение с осью Оу: х=0
18-2*0=18
Точка пересечения (0;18)
б)значение функции если значение аргумента равно 2
18-2*2²=18-2*4=18-8=10
Значение функции y(2)=10
в)значение аргумента, при котором значение функции равно 16
18-2x²=16
2x²=2
x²=1
x=1 или х= -1
г)проходит ли график функции через точку В (-2: 10)
х=-2 у=10
18-2*(-2)²=18-2*4=18-8=10
Да, проходит
2
функция задана формулой у=2х^2-8 . Не выполняя построения определите
а) координаты точек пересечения графика функции с осями координат
пересечение с осью Ох: у=0
2x²-8=0
2x²=8
x²=4
x=2 или х=-2
Точки пересечения (2;0) или (-2;0)
пересечение с осью Оу: х=0
2*0-8= -8
Точка пересечения (0;-8)
б)значение функции если значение аргумента равно 3
у(3)=2*3²-8=2*9-8=18-8=10
в)значение аргумента, при котором значение функции равно -6
2x²-8= -6
2x²=2
x²=1
x=1 или х= -1
г)проходит ли график функции через точку А( -3:10)
х= -3 у=10
2*(-3)²-8=2*9-8=18-8=10
Да, проходит
Для того, чтобы найти значение cos a при tg a =2 и 0, воспользуемся следующей тригонометрической формулой: 1 + tg^2 a = 1 / (cos^2 a) и выразим из нее косинус.
1 + tg^2 a = 1 / (cos^2 a)
(1 + tg^2 a) * (cos^2 a) = 1
cos^2 a = 1 / (1 + tg^2 a)
cos a = sqrt (1 / (1 + tg^2 a)), где sqrt - корень квадратный.
Далее найдем косинус при значении tg a =2.
1) cos a = sqrt (1 / (1 + 2 ^2 )) = sqrt (1 / 5) = 0.4472
Далее найдем косинус при значении tg a = 0.
2) cos a = sqrt (1 / (1 + 0 ^2 )) = sqrt (1 / 1) = 1.
ответ: 0.4472, 1.
Объяснение:
y' =0
3x^2=3
x = +/-1
+ - +
-------------'----------'------------>
-1 1
Точки экстремума лежат вне отрезка [2;5].
у(2) = 8 - 6 +2 = 4 - наименьшее значение
у(5) = 125 - 15 + 2 = 112