Объяснение:
ОДЗ : cos2x ; sin2x
cosx ± 1/4 ; sinx ; cosx 0
x ± arccos0,25 + 2πk ; x πk/2 , k ∈ z
2*2cos^2 x - 2 = 1/2cos2x * ( ... )
2cos2x = 1/2cos2x * ( ... )
можно поделить на cos2x, так как cos2x также есть в знаменателе, то есть корни мы не теряем
2 = 1/2 * ( ... )
для удобства делаем замену: пусть 2x = t
2 = 1/2 * (/cost + 1/sint)
2 = /2cost + 1/2sint
(sint + cost) / 2costsint = 2
-2 (-/2 sint - 1/2 cost) / 2costsint = 2
-2 (-sin (π/3) sint - cos(π/3) cost) / 2costsint = 2
выносим минус за скобки и сокращаем 2
а также, используя формула приведения косинуса, только в обратную сторону, делаем все красиво
cos (π/3 - t) / costsint = 2
cos (π/3 - t) = 2costsint
cos (π/3 - t) - sin2t = 0
sin (π/2 - (π/3 - t) - sin2t = 0
sin (π/6 + t) - sin2t = 0
используем sin(t) - sin(s) = 2cos((t + s)/2) * sin ((t - s)/2)
и делим на 2
cos ((π + 18t)/12) * sin((π - 6t)/12) = 0
cos ((π + 18t)/12) = 0
sin ((π - 6t)/12) = 0
t = 5π/18 + 2πk/3
t = π/6 + 2πk
вспоминаем, что t = 2x
x = 5π/36 + πk/3
x = π/12 + πk
k ∈ Z
Почитай может что-то найдёшь.Определение пределов последовательности и функции, свойства пределов, первый и второй замечательные пределы, примеры.
Постоянное число а называется пределом последовательности {xn}, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения xn, у которых n>N, удовлетворяют неравенству
|xn - a| < ε. (6.1)
Записывают это следующим образом: или xn→ a.
Неравенство (6.1) равносильно двойному неравенству
a - ε < xn < a + ε которое означает, что точки x n, начиная с некоторого номера n>N, лежат внутри интервала (a-ε , a+ε), т.е. попадают в какую угодно малую ε-окрестность точки а.
Последовательность, имеющая предел, называется сходящейся, в противном случае - расходящейся.
Пояснення:надеюсь что-то понятно