Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, , но сейчас это не нужно), нам повезло, это 32
Учитываем, что , получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
Это 15 чисел, но каждое равно просто самому себе, потому что они простые и делятся только на 1 и на себя. 1 - это не простое число.
Все составные числа больше, чем сумма их простых делителей.
Например, делители 10 и 20: 2 и 5, 2+5 = 7. 34: 2 и 17, 2+17 = 19.
Если считать 1 простым числом, тогда число только одно:
6 = 1+2+3 - это так называемое совершенное число.
До 50 есть еще одно совершенное число 28 = 1+2+4+7+14,
но у него не все делители - простые.
ответ: если 1 - не простое число, то 15 чисел.
Если 1 - простое число, то одно число 6.