М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DdMirko
DdMirko
08.02.2023 07:20 •  Алгебра

Знайти значення похідної функції у=2х²+4х у точці х0=-1

👇
Открыть все ответы
Ответ:
Для решения данного примера, мы должны выполнить несколько шагов.

1. Начнем с вычисления выражения внутри скобок, то есть (1/5 + 3/25).

Для суммирования этих двух дробей, нам необходимо привести их к общему знаменателю. Общим знаменателем для 5 и 25 является число 25.

Теперь, чтобы привести 1/5 к знаменателю 25, нужно умножить числитель и знаменатель на 5:
1/5 = (1/5) * (5/5) = 5/25

Теперь, чтобы привести 3/25 к знаменателю 25, необходимо умножить числитель и знаменатель на 1:
3/25 = (3/25) * (1/1) = 3/25

Теперь выражение в скобках равно: (5/25 + 3/25)

2. Суммируем полученные дроби:
(5/25 + 3/25) = 8/25

Теперь выражение сократилось до 8/25.

3. Теперь, когда мы имеем внутри скобок дробь 8/25, мы можем перемножить эту дробь на 5/12.

Для умножения двух дробей, мы просто перемножаем числители и знаменатели:
(8/25) * (5/12) = (8 * 5) / (25 * 12) = 40 / 300

4. Решим дробь 40/300 путем сокращения.

Чтобы сократить эту дробь, мы можем разделить числитель и знаменатель на их наибольший общий делитель (НОД), который является 20.
40/300 = (40/20) / (300/20) = 2/15

Таким образом, итоговый результат примера 5/12 * (1/5 + 3/25) равен 2/15.
4,8(23 оценок)
Ответ:
Wilde163
Wilde163
08.02.2023
Добрый день! Я рад стать вашим школьным учителем и помочь вам решить задачу.

Уравнение касательной к окружности в данной задаче можно найти, используя следующий алгоритм:

1. Найдите координаты центра окружности. В данном случае окружность имеет уравнение x^2 + y^2 = 25, что означает, что центр окружности находится в точке с координатами (0, 0).

2. Найдите угловой коэффициент (k) касательной. Угловой коэффициент для касательной к окружности можно получить, взяв производную уравнения окружности и подставив в нее координаты точки пересечения с касательной. Для нашей окружности эта производная будет следующей: dx^2 + dy^2 = 0. Дифференцируем данное уравнение и подставляем в него координаты точки пересечения:

2x + 2y*y' = 0,

где (x', y') - координаты точки пересечения, y' - искомый угловой коэффициент. В нашем случае у нас (x', y') = (-4, 3). Подставляем эти значения и находим y':

2*(-4) + 2*3*y' = 0,
-8 + 6y' = 0,
6y' = 8,
y' = 8 / 6,
y' = 4 / 3.

3. Подставьте координаты точки a(-4; 3) и найденный угловой коэффициент (k) в уравнение прямой y = kx + b, чтобы найти значение b. В нашем случае у нас y = 4/3*x + b и точка (-4, 3).

Подставляем:

3 = (4 / 3)*(-4) + b,
3 = -16 / 3 + b,
b = 3 + 16 / 3,
b = 25 / 3.

Таким образом, получаем уравнение прямой, которая является касательной к окружности x^2 + y^2 = 25 в точке a(-4; 3):

y = 4/3*x + 25/3.

Все вопросы понятны? Если есть еще вопросы или что-то не ясно, пожалуйста, сообщите мне.
4,4(57 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ