при а>0 ветви параболы идут вверх при а<0 ветви параболы идут вниз прежде всего найдем нули функции, то есть те х, при которых у=0
обращается в ноль для этого решаем уравнение ах²+bx+c=0 для начала находим дискриминант D=b²-4ac если D>0, у нас будут два пересечения с осью ОХ в точках х¹ и х² которые являются корнями квадратичной функции.
х¹'²=(-b±✓D)/2a
если D=0, то такая точка будет одна, причём ось ОХ будет касательной к параболе в этой точке.
если D<0, и а>0 то парабола будет над осью ОХ и все у>0 если D>0 и а<0, то парабола будет под осью ОХ и все у<0
теперь найдем те точки, при которых парабола пересекает ось ОУ
для этого подставляем х=0 в y(x)=ах²+bx+c, нетрудно увидеть, что при х=0, у=с
далее найдем производную у'
y'(x)=(ах²+bx+c)'=2аx+b y'(x*)=0 => x*= -b/(2a)
это координата вершины параболы затем посчитаем y*=y(x*), подставив х* в наше уравнение параболы у(х*)=а(х*)²+bx*+с
Так что основными точками , которые Вам надо найти будут точки пересечения параболы с осями ОХ, ОУ и вершина параболы. остальные точки - на Ваше усмотрение...
№1. Делаю только «а», «б» делаете по аналогии. а) Предположим, что графики функций и . Чтобы найти координату точек пересечения приравняем две функции (они пересекаются, значит приравниваем). Получаем: можем найти подставив в выражение первой функции , а можно сделать проще. Так как пересечение будет с прямой , то и точки пересечения будут иметь координату . Итак, получилось две точки пересечения с координатами: . Покажем теперь то же на графике. Смотрите рисунок, приложенный к ответу. №2. а) Дан отрезок (этот отрезок по оси ), найдем значения на концах этого отрезка: Имеем, что первое — наименьшее значение функции на заданном отрезке, а второе — наибольшее. б) Делаем ту же работу: Видим, что первое — наибольшее значение функции на заданном промежутке, а второе — наименьшее.
х=0
Объяснение: