М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
asya20045
asya20045
24.04.2021 12:36 •  Алгебра

Порівняти вирази:а)2\3а⁴ і (2\3а)⁴ якщо а=3​

👇
Ответ:
иззи2
иззи2
24.04.2021

Вроде бы 2 число больше первого

4,6(88 оценок)
Открыть все ответы
Ответ:
WaterdropE
WaterdropE
24.04.2021
Рассуждаем следующим образом.
Чтобы А³ была нулевой матрицей, но чтобы при этом матрица А² не была нулевой, нужно чтобы в матрице А² все элементы кроме одного были равны нулю. Тогда в матрице А должны быть все элементы кроме двух равны нулю. Таким условиям отвечает, матрица, в которой, например два элемента находящихся на линии, параллельной главной диагонали, равны 1, а все остальные элементы матрицы равны нулю:
\left[\begin{array}{ccc}0&1&0\\0&0&1\\0&0&0\end{array}\right]
Или:
\left[\begin{array}{ccc}0&0&0\\1&0&0\\0&1&0\end{array}\right]
Тогда при возведении первой матрицы в квадрат получим матрицу:
\left[\begin{array}{ccc}0&0&1\\0&0&0\\0&0&0\end{array}\right]
А при возведении второй матрицы в квадрат получим:
\left[\begin{array}{ccc}0&0&0\\0&0&0\\1&0&0\end{array}\right]
А возведя в третью степень обе матрицы, получим нулевые матрицы.
ответ: \left[\begin{array}{ccc}0&1&0\\0&0&1\\0&0&0\end{array}\right]или\left[\begin{array}{ccc}0&0&0\\1&0&0\\0&1&0\end{array}\right]
4,7(86 оценок)
Ответ:
MostQweek
MostQweek
24.04.2021
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

(
a
+
b
)
n
=

k
=
0
n
(
n
k
)
a
n

k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n

1
b
+

+
(
n
k
)
a
n

k
b
k
+

+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n

k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.

В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
4,6(39 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ