Рассмотрим трехзначное число 324=300+20+5=3·100+2·10+5, в этом числе 3 сотни, 2 десятка и 5 единиц.
Если в числе содержится a сотен, b десятков и c единиц, то это число (100а +10b+c). Число, записанное теми же цифрами, но в обратном порядке содержит с сотен, b десятков и а единиц. (100с+10b+a). Сумма этих чисел: (100а +10b+c) + (100с+10b+a)=101a+20b+101c По условию b=2a c=3a Значит 101а +20b+101c=101а +20·2a+101·3a=101a+40a+303a=444a. 444 делится на 4, значит и произведение 444а делится на 4, значит сумма (100а +10b+c) + (100с+10b+a) делится на 4.
Рассмотрим трехзначное число 324=300+20+5=3·100+2·10+5, в этом числе 3 сотни, 2 десятка и 5 единиц.
Если в числе содержится a сотен, b десятков и c единиц, то это число (100а +10b+c). Число, записанное теми же цифрами, но в обратном порядке содержит с сотен, b десятков и а единиц. (100с+10b+a). Сумма этих чисел: (100а +10b+c) + (100с+10b+a)=101a+20b+101c По условию b=2a c=3a Значит 101а +20b+101c=101а +20·2a+101·3a=101a+40a+303a=444a. 444 делится на 4, значит и произведение 444а делится на 4, значит сумма (100а +10b+c) + (100с+10b+a) делится на 4.
b1=3; b2=6
q=b2/b1=6/3=2; q=2
bn=b1*q^(n-1)
384=3*2^(n-1)
2^(n-1)=384/3
2^7=128
2^(8-1)=128
n=7, т.е. число 384 является седьмым членом геометрической прогрессии 3, 6...
b1=4/81; b2=8/27
q=b2/b1=6
bn=b1*qn-1
384=3*6^(n-1)
6^(n-1)=384/3
6^(n-1)=128
Число 384 не является седьмым членом геометрической прогрессии 4\81, 8\27...