Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х . 
 А за у дней может закончить Алиса, тогда еѐ производительность равна / у . 
 Т.к. они могут напечатать курсовую работу за 6 дней, 
то /х + /у = 1/  
 Если сначала % = / части курсовой напечатает Катя, 
 а затем завершит работу Алиса, то Алисе остается 
% = / части курсовой. 
 Вся курсовая работа будет выполнена за 12 дней т.е. 
 ( /) х + (/ ) у = .
  Решим систему: 
 /х + /у = / ,
  (/) х + (/ ) у = .
   + = , 
 + = ; 
  у = − , ;
 + * ( − , ) = *( − , )
  у = − , ;
 , ² − + = ; 
 у = − , ;
 ² − + = ; 
 ² − + = ; 
 =  , у = 
 или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса. 
 Значит, Катя может напечатать курсовую работу за 10 дней. 
 ответ. за 10 дней
-Вторая труба наполнит за у часов (в час 1/у доля бассейна)
y - x = 5 (из "через первую трубу наполняются водой на 5 ч быстрее чем через вторую")
y = 5 + x
10 / x + 18/y = 1 (из "вначале открыть вторую трубу а через 8 ч открыть и первую")
xy= 10 y + 18 x Подставляем сюда t2
x(5+x) = 50 + 28 x
x^2 - 23 x - 50 = 0
(23 +- sqrt(529 + 200))/2=( 23 +- 27)/2
Отрицательный корень отбрасываем
х = 25 - за 25 часов, если работает первая труба
у = 30 - за 30 часов, если работает вторая труба