М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nashinvo
Nashinvo
16.03.2021 16:23 •  Алгебра

УМАЛЯЮ решите эти неравенства с интервала​

👇
Ответ:
katyatrizna
katyatrizna
16.03.2021

незнаю

4,6(43 оценок)
Открыть все ответы
Ответ:
карольчик1
карольчик1
16.03.2021
Давайте я вам объясню. Координаты, имеют вид (x;y), то есть, если дана некая функция, в нашем случае игрек зависит от икса. Нам требуется лишь подставить значение икса в координате, и посмотреть, будет ли координата игрека равна координате игрека данной функции. Сейчас вы поймете:
Мы берем точку А (2;-1), и что бы проверить, проходит ли функция y=x^2-4x+3 через данную точку, мы должны, взять значение икса в данной точке, и подставить данное значение в функцию:
y=2^2-4*2+3
y=7-8
y=-1

Отсюда следует, что функция проходит через данную точку.

Данную операцию можно проделать и 2 задании, но зачем? Мы уже итак знаем что при х=2, у=-1.
А значит, что функция не проходит через точку В.
4,5(59 оценок)
Ответ:
Blarow
Blarow
16.03.2021

1) tga=y'(x) в некоторой точке, поэтому найдем абсциссу точки касания. Точка пересечения с осью абсцисс имеет y=0, т.е.

x^3-27=0\\ x^3=27\\ x=3

Найдем производную функции в точке с х=3

y'(3)=3y^2=3 \cdot 3^2=27

ответ: tga=27

2) функция прерывна в точках в которых производная не определена

найдем производную функции

\frac{x(4x^3+3x62)(x+2)-(x^4+3x^2)(2x+2)}{x^2(x+2)^2}

Производная неопределена если ее знаменатель будет равен 0. Найдем эти значения

x^2(x+2)^2=0\\ x^2=0\\x_{1}=0\\ x+2=0\\ x_{2}=-2

эти значения разбивают числовую прямую на промежутки непрерывности

((-\infty ;0) \cup (0; -2) \cup (-2; + \infty )

3) скорость точки это производная f'(x) уравнения движения, а ускорение - это производная от скорости движения или вторая производная f"(x)  уравнения движения в заданной точке. Надем скорость

V(1)=f'(1)=12-6t=12-6*1=6

a(1)=V'(1)=(12-6t)'=-6

4) уравнение касательной к графику функции y = f(a) + f '(a)(x – a)

f(-3)=2-(-3)^2=2-9=-7

f'(-3)=-2x=-2*(-3)=6

y=-7+6(x+3)

y=6х+11 (рисунок не могу здесь выполнить)

5) задание не полное.

4,4(9 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ