М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vita142
vita142
28.01.2020 16:06 •  Алгебра

Сколько корней имеет уравнение Х^2+5х+7=0​

👇
Ответ:
Кирилл727383
Кирилл727383
28.01.2020

нет корней

Объяснение:

D<0

4,8(14 оценок)
Ответ:
kokbhj
kokbhj
28.01.2020

D= b^2-4ac= 5^2-4×1×7= 25-28=-3

D <0

Объяснение:

4,6(100 оценок)
Открыть все ответы
Ответ:
Уликак
Уликак
28.01.2020
Если дискриминант отрицательный ---> корней НЕТ)))
а корни --- это точки, лежащие на оси ОХ --- точки пересечения графика этой функции с осью ОХ (а график здесь --- парабола)))
и что значит, что корней НЕТ?? --- значит, график эту ось НЕ пересекает...
т.е. парабола либо ВСЯ выше оси ОХ, либо вся ниже оси ОХ...
осталось рассмотреть направление ветвей параболы...
старший коэффициент > 0 (3 > 0) ---> ветви ВВЕРХ, т.е. ВСЯ парабола выше оси ОХ (иначе парабола пересечет ось ОХ)))
а вопрос (знак неравенства): когда парабола НИЖЕ оси ОХ
ответ: никогда (пустое множество решений)
4,6(87 оценок)
Ответ:
меаавепеу
меаавепеу
28.01.2020

y = 2x^{3} - 3x^{2}

y' = (2x^{3} - 3x^{2})' = 6x^{2} - 6x

Необходимые условия экстремума:

y' = 0

6x^{2} - 6x = 0

6x(x - 1) = 0

\left[\begin{array}{ccc}x_{1} = 0\\x_{2} = 1\\\end{array}\right

Имеем две критические (стационарные) точки: x_{1} = 0 и x_{2} = 1

Достаточные условия экстремума: если при переходе через критическую точку производная непрерывной функции меняет знак на противоположный, то имеем экстремум функции в этой точке.

Если точка с абсциссой x_{0} меняет знак с "+" на "–" (двигаясь в направлении увеличения x), то x_{0}  — точка максимума, а если с "–" на "+" , то x_{0}  — точка минимума.

Из промежутка x \in (-\infty; \ 0) выберем, например, x = -1 и имеем: y'(-1) = 6 \cdot (-1)^{2} - 6\cdot (-1) = 6 + 6 = 12 0

Из промежутка x \in (0; \ 1) выберем, например, x = 0,5 и имеем: y'(0,5) = 6 \cdot (0,5)^{2} - 6\cdot 0,5 = 1,5 - 3 = -1,5 < 0

Имеем максимум в точке с абсциссой x_{\max} = 0

Из промежутка x \in (1; \ +\infty) выберем, например, x = 2 и имеем: y'(2) = 6 \cdot 2^{2} - 6\cdot 2 = 24 - 12 = 12 0

Имеем минимум в точке с абсциссой x_{\min} = 1

ответ: x_{\max} = 0, \ x_{\min} = 1

4,5(80 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ