Задание. Прогулочный катер вышел из пункта A вниз по течению реки, которая впадает в озеро, дошёл до середины озера и отправился обратно. Найдите длину всего пути (в км), если вся прогулка заняла 3 часа, собственная скорость катера равна 24км/ч, скорость течения реки - 6км/ч, и на озере катер находился 20 минут. Решение: Пусть длина всего пути равен х км, а путь по реке - км. Скорость по течению равна (24+6=30)км/ч, а против течения - (24-6=18) км/ч. Так как катер дошёл до середины и обратно вернулся, то на весь путь он затратил что составляет 3 часа - 20 мин = 3 ч - 20/60 ч = 8/3.
(а+1)во 2 степени-(2а+3)во 2 степени=0 Нужно раскрыть скобки по формулам сокращенного умножения Сначала раскроем (а+1)во второй степени,получится а в квадрате +2а+1 Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени -(4а в квадрате +12а+9 ) Раскроем скобки и получится -4а в квадрате -12а-9 В итоге получилось а в квадрате +2а+1-4а в квадрате -12а-9 Находим подобные и получается -3 а в квадрате -10 а -8=0 Теперь решаем дискриминантом Д(дискриминант)=корню из четырех ,то есть двум А1= -2 целые одна третья А2= -1
Второе уравнение решается аналогично 25 с в квадрате +80с +64 -с в квадрате +20с-100=0 Что-бы было удобней вычитать Д сократим все на два,и получится 6с в квадрате+25с-9=0 Д=корень из 841 =29 С1=1/3 С2=11/3=3 целых 2/3
Решение:
Пусть длина всего пути равен х км, а путь по реке -
Составим уравнение
ответ: 68 км.