Решение Графиком функции является парабола, ветви которой направлены вверх. 1) D (f) =R , т.к. f – многочлен. 2) f(-х) = (-х)2 - 4(-х) - 5 = х2 + 4х – 5 Функция поменяла знак частично, значит, f не является ни чётной, ни нечётной. 3) Нули функции: При х = 0 у = - 5; (0;-5) при у = 0 х2 - 4х – 5 = 0 По теореме, обратной теореме Виета х1 = -1; х2 = 5 (-1;0); (5;0). 4) Найдём производную функции f: f ′(х) = 2х – 4 Найдём критические точки: f ′(х) = 0; 2х – 4 = 0; х = 2 – критическая точка f ′(х) - + f (х) 2 х min 5) Найдём промежутки монотонности: Если функция возрастает, то f ′(х) > 0 ; 2х – 4 > 0; х > 2. Значит, на промежутке (2; ∞) функция возрастает. Если функция убывает, то f ′(х) < 0; 2х – 4 < 0; х < 2. Значит, на промежутке (- ∞; 2) функция убывает. 6) Найдём координаты вершины параболы: Х =Y = 22 - 4*2 – 5 = -9 (2;-9) – координаты вершины параболы. 7) Область изменения функции Е (у) = (-9; ∞) 8) Построим график функции: у -1 2 5 -5 х
1. Выносим x за скобки, запишем ввиде степени: (x^2-x)(x+5)=(x+3)^2 * (x-2) Перемножим скобки и вынесем (x+3)^2 за скобки x^3+5x^2-x^2-5x = (x+3)^2 * x - (x+3)^2 * 2 Запишем выражение в развернутом ввиде при формулы сокращенного умножения (a+b)^2: x^3 + 5x^2 -x^2 -5x = ( x^2 +6x +9 )x - (x+3)^2 * 2 Выносим x за скобки: x^3 + 5x^2 -x^2 -5x = x^3 +6x^2 +9x - (x+3)^2 * 2 разложим по формуле сокращенного (a+b)^2, а так же сократим равные члены с разных сторон уравнения: 5x^2 - x^2 -5x = 6x^2 + 9x - ( x^2 +6x +9 ) * 2 Приводим подобные и вычисляем, знак каждого члена скобок меняем на противоположный, т.к. перед скобками стоит "-" : 4x^2 - 5x = 6x^2 + 9x + ( -x^2 -6x -9) * 2 Выносим 2 за скобки: 4x^2 -5x = 6x^2 +9x -2x^2 - 12x - 18 Вычисляем подобные члены: 4x^2 - 5x = 4x^2 -3x - 18 Сокращаем равные члены обеих частей уравнения: -5x = -3x - 18 Перемещаем иксы в левую часть и меняем знак: -5x +3x = -18 Приводим подобные и вычисляем: -2x = -18 Делим обе части на -2 и получаем ответ: x = 9
Графиком функции является парабола, ветви которой направлены вверх. 1) D (f) =R , т.к. f – многочлен. 2) f(-х) = (-х)2 - 4(-х) - 5 = х2 + 4х – 5 Функция поменяла знак частично, значит, f не является ни чётной, ни нечётной. 3) Нули функции: При х = 0 у = - 5; (0;-5) при у = 0 х2 - 4х – 5 = 0 По теореме, обратной теореме Виета х1 = -1; х2 = 5 (-1;0); (5;0). 4) Найдём производную функции f: f ′(х) = 2х – 4 Найдём критические точки: f ′(х) = 0; 2х – 4 = 0; х = 2 – критическая точка
f ′(х) - + f (х) 2 х
min 5) Найдём промежутки монотонности: Если функция возрастает, то f ′(х) > 0 ; 2х – 4 > 0; х > 2. Значит, на промежутке (2; ∞) функция возрастает. Если функция убывает, то f ′(х) < 0; 2х – 4 < 0; х < 2. Значит, на промежутке (- ∞; 2) функция убывает. 6) Найдём координаты вершины параболы: Х =Y = 22 - 4*2 – 5 = -9 (2;-9) – координаты вершины параболы.
7) Область изменения функции Е (у) = (-9; ∞) 8) Построим график функции:
у
-1 2 5 -5 х