М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vakumm765
vakumm765
19.11.2021 11:59 •  Алгебра

Написать уравнение касательной к графику функции y=x2-3x+5 в точке с абсциссой x0=2

👇
Ответ:
KingTheCat
KingTheCat
19.11.2021

Задача: Найти уравнение касательной к графику функции

f(x)=x²−3x+5 в точке a=2.

Уравнение касательной к графику функции f(x) в точке x₀ = a находится по формуле:

    y = f(a)+f′(a)⋅(x−a)

Сначала найдём производную функции f(x):

    f′(x) = 2x−3

Затем найдём значение функции и её производной в точке a

    f(a) = f(2) = 3

    f′(a) = f′(2) = 1

Подставим числа a = 2; f(a) = 3; f′(a) = 1 в начальную формулу:

    y = 3+1⋅(x−2) = x+1

ответ: y=x+1.


Написать уравнение касательной к графику функции y=x2-3x+5 в точке с абсциссой x0=2
4,6(21 оценок)
Открыть все ответы
Ответ:
LizaZay
LizaZay
19.11.2021

нет

Объяснение:

Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.

Пусть искомый многочлен f(x) существует.

Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).

Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.

Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).

То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней.

4,7(99 оценок)
Ответ:
nekitpundya2256
nekitpundya2256
19.11.2021

ответ: Нет.

Из условия следует, что f(x) = (x – a)(x – b), где a ≠ b.

Пусть искомый многочлен f(x) существует.

Тогда, очевидно f(f(x)) = (x – t1)²(x – t2)(x – t3).

Заметим, что t1, t2, t3 — корни уравнений f(x) = a и f(x) = b, при этом корни этих уравнений не совпадают, поэтому можно считать, что уравнение f(x) = a имеет один корень x = t1.

Рассмотрим уравнение f(f(f(x))) = 0. Его решения, очевидно, являются решениями уравнений f(f(x)) = a и f(f(x)) = b. Но уравнение f(f(x)) = a равносильно уравнению f(x) = t1 и имеет не более двух корней, а уравнение f(f(x)) = b — не более четырех корней (как уравнение четвертой степени).

То есть уравнение f(f(f(x))) = 0 имеет не более 6 корней

4,6(71 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ