Пускай скорость пассажирского поезда будет х км/ч. Тогда скорость товарного поезда будет х-20 км/ч. Время, за которое пассажирский поезд пройдёт 480 км, пусть будет у ч, тогда время товарного поезда будет у+4 ч. Имеем систему уравнений: х×у=480, (х-20)×(у+4)=480. х=480/у, ((480/у)-20)×(у+4)=480, ((480-20у)/у)×(у+4)=480, (480-20у)×(у+4)=480у, 480у+1920-20у^2-80у=480у, -20у^2-80у+1920=0, -у^2-4у+96=0, D=(-4)^2-4×(-1)×96=16+384=400, у1=(4-корень с 400)/(2×(-1))=(4-20)/(-2)=(-16)/(-2)=8, у2=(4+корень с 400)/(2×(-1))=(4+20)/(-2)=24/(-2)=-12. у2=-12 - не может быть ответом задачи, так как время не может быть отрицательным. Значит у=8, х=480/8=60. Имеем: скорость пассажирского поезда равна 60 км/ч, скорость товарно поезда равна 60-20=40 км/ч.
В решении.
Объяснение:
1.
а) х² + 6х = 0 неполное квадратное уравнение
х(х + 6) = 0
х₁ = 0;
х + 6 = 0
х₂ = -6.
б) -3х² = 18х неполное квадратное уравнение
-3х² - 18х = 0
-3х(х + 6) = 0
-3х = 0
х₁ = 0;
х + 6 = 0
х₂ = -6.
2.
а) 3х² - 27 = 0 неполное квадратное уравнение
3х² = 27
х² = 9
х = ±√9
х = ± 3;
б) 18 - 6х² = 0 неполное квадратное уравнение
-6х² = -18
6х² = 18
х² = 3
х = ±√3.
3.
а) -5х² = 0 неполное квадратное уравнение.
х² = 0/-5
х = 0;
б) 32 + 8х² = 0 неполное квадратное уравнение.
8х² = -32
х² = -32/8
х² = -4;
Нет решения.
4.
а) 6х² - 13х - 15 = 0
D=b²-4ac = 169 + 360 = 529 √D=23
х₁=(-b-√D)/2a
х₁=(13-23)/12
х₁= -10/12
х₁= -5/6;
х₂=(-b+√D)/2a
х₂=(13+23)/12
х₂=36/12
х₂=3.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
б) -5х² - 27х + 56 = 0/-1
5х² + 27х - 56 = 0
D=b²-4ac = 729 + 1120 = 1849 √D=43
х₁=(-b-√D)/2a
х₁=(-27-43)/10
х₁= -70/10
х₁= -7;
х₂=(-b+√D)/2a
х₂=(-27+43)/10
х₂=16/10
х₂=1,6.
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.