М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
wiamous1
wiamous1
18.08.2020 02:20 •  Алгебра

(10a²y)²×(3ay²)³ нужно представить в виде одночлена стандартного вида

👇
Ответ:
katyaDarsht
katyaDarsht
18.08.2020
Чтобы представить выражение (10a²y)²×(3ay²)³ в виде одночлена стандартного вида, мы должны выполнить операцию возведения в степень и перемножить полученные результаты. Давайте пошагово разберемся:

1. Начнем с первого множителя (10a²y)². Чтобы возвести это выражение в степень, мы умножим каждый член внутреннего выражения на само себя:
(10a²y)² = 10a²y × 10a²y

2. В результате умножения, мы перемножаем коэффициенты (10 × 10 = 100), основания (a × a = a²) и степени (2 + 2 = 4) внутреннего выражения:
(10a²y)² = 100a²y × a²y = 100a⁴y²

3. Теперь рассмотрим второй множитель (3ay²)³. Возводим это выражение в степень, умножая каждый член на само себя:
(3ay²)³ = 3ay² × 3ay² × 3ay²

4. При умножении коэффициентов получаем (3 × 3 × 3 = 27), при умножении оснований получаем (a × a × a = a³), а при умножении степеней получаем (1 × 2 × 2 × 2 = 8):
(3ay²)³ = 27a³y² × a³y² × a³y² = 27a⁹y⁶

5. Теперь умножим полученные результаты первого и второго множителя:
(100a⁴y²) × (27a⁹y⁶)

6. При умножении коэффициентов (100 × 27 = 2700), оснований (a⁴ × a⁹ = a¹³) и степеней (y² × y⁶ = y⁸):
(100a⁴y²) × (27a⁹y⁶) = 2700a¹³y⁸

Таким образом, выражение (10a²y)²×(3ay²)³ в виде одночлена стандартного вида будет равно 2700a¹³y⁸.
4,7(50 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ