Объяснение:
Рассмотрим сначала первое неравенство системы.
Начнем с ОДЗ:
Продолжим решение:
1)
Замена: .
Обратная замена:
С учетом ОДЗ оба корня подходят.
2)
С учетом ОДЗ получим, что решение неравенства:
Теперь перейдем ко второму неравенству системы:
Понятно, что сначала нужно написать ОДЗ.
Продолжим решение:
Заметим, что данное неравенство хорошо раскладывается на множители:
Решим неравенство по методу интервалов.
1)
2)
Введем функции и
. Заметим, что первая функция возрастает, а вторая убывает. Поэтому, если уравнение имеет корень, он единственный. Теперь заметим, что x=2 - корень уравнения. Действительно,
, верно. Так, мы решили это уравнение, получив, что его корень x=2.
Тогда решение неравенства с учетом ОДЗ:
Итого имеем:
Найдем пересечение:
Задание выполнено!
1) 6x+5=a-2
х=(а-7)/6
2) 3x-7=4a-1
х=(4а+6)/3
равносильные уравнения имеют одинаковые корни
(а-7)/6 = (4а+6)/3 домножим на 6
(а-7) =(4а+6)*2
а-7= 8а+12
7а= -19
а= -19/7
Проверка :
6х +5 = -19/7 -2 3x-7= 4*(-19/7) - 1
6х= -19/7 - 7 3х = - 76/7 +6
6х = (-19-49)/7 3х = (-76+42)/7
6х= -68/7 3х = -34/7
х= - 68/42 х = - 34/21
х= -34/21 Объяснение: