Пусть скорость первого-х км/ч, а скорость второго- y км/ч Так как первый велосипедист проезжает за 3 ч на 18 км больше,чем второй за 2 ч. , то 3x- 2y=18 Так как расстояние между городами равно 52 км и велосипедисты встретились через 2 ч после начала движения, то 2(x+y)=52 Получили систему уравнений:3x-2y=18 и 2(x+y)=52 2(x+y)=52 x+y=26 x=26-y Подставляем значение х в уравнение 3x-2y=18 3(26-y)-2y=18 78-3y-2y=18 -5y=-60 y=12(км/ч)-скорость второго x=26-y x=26-12 x=14(км/ч)-скорость первого велосипедиста.
2x^2-6x+5/2x-3<=1; 2x^2 - 6x +5 - 2x + 3 / 2x - 3 <=0; 2x^2 - 8x+ 8 / 2x-3 <=0; 2(x^2 - 4x + 4) /2(x - 1,5) <=0; x^2 - 4x + 4 / x-1,5<=0; (x-2)^ / x - 1,5<=0; x= 2;корень четной кратности, при переходе через него неравенство знак не меняет x= 1,5 Решаем методом интервалов. Точку х=2 закрашиваем, так как пришла из корня(неравенство нестрогое), а точку х= 1,5 выкалываем(пустая), так как знаменатель не может быть равен 0.
- + + 1,52 x
Методом интервалов определяем, что решением неравенства будет интервал от минус бесконечности до х=1,5(не включая) и точка х=2. ответ: (- бесконечность: 1,5) U {2}
Так как первый велосипедист проезжает за 3 ч на 18 км больше,чем второй за 2 ч. , то 3x- 2y=18
Так как расстояние между городами равно 52 км и велосипедисты встретились через 2 ч после начала движения, то 2(x+y)=52
Получили систему уравнений:3x-2y=18 и 2(x+y)=52
2(x+y)=52
x+y=26
x=26-y
Подставляем значение х в уравнение 3x-2y=18
3(26-y)-2y=18
78-3y-2y=18
-5y=-60
y=12(км/ч)-скорость второго
x=26-y
x=26-12
x=14(км/ч)-скорость первого велосипедиста.