1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
Пусть х - время, за которое Иван может вспахать все поле.
Тогда х+5 - время, за которое все поле может вспахать Григорий.
Примем всю площадь поля за 1.
Тогда 1/х - производительность Ивана.
1/(х+5) - производительность Григория.
1/х + 1/(х+5) - производительность Ивана и Григория, работающих вместе что соответствует 1/6.
Уравнение
1/х + 1/(х+5) = 1/6
Умножим обе части неравенства на 6х(х+5), чтобы избавиться от знаменателей.
6х(х+5)/х + 6х(х+5)/(х+5) = 6х(х+5)/6
6(х+5) + 6х = х(х+5)
6х+30 + 6х = + х^2 + 5х
х^2 - 7х - 30 = 0
D = 49 -4(-30) = 49 + 120 = 169
√D = √169 = 13
x1 = (7-13)/2 = -6/2 = -3 - не походит, поскольку время не может отрицательным.
х2 = (7+13)/2 = 20/2 = 10 часов - время, за которое Иван вспашет все поле.
ответ: 10 часов
Проверка
1) 1:10= 1/10 - производительность Ивана.
2) 1:6 = 1/6 - производительность Ивана и Григория, работающих вместе.
3) 1/6 - 1/10 = 5/30 - 3/30 = 2/30 = 1/15 - производительность Григория.
4/ 1 : 1/15 = 15 часов- за такое время Григория может выполнить всю работу.
5) 15-10=5 часов - на столько часов Иван выполнит работу раньше, чем Григорий.
Подробнее - на -
Объяснение: